1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
48 - 2x = -2 * (x - 24)
9x + 4 = -2 * (x - 24)
11x = 44
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
2x - 16 = 2 * (x - 8)
-4 * (x - 2) = 2 * (x - 8)
-6x = -24
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
log_0,5(x^2 +x) = log_0,5 (2)
x^2 +x=2
x^2 +x - 2=0
По сумме коэффициентов:
x1=1 x2=c/a=-2
ОДЗ: x^2 +x>0 x(x+1)>0 x>0 x>-1
-2 не удовл. усл.
ответ: 1
2. 2log_3 (x)=log_3 (2x^2 -x)
log_3 (x^2) = log_3 (2x^2 - x)
x^2= 2x^2 -x
x^2-2x^2 +x=0
-x^2 +x=0
x(x-1)=0
x1=0
x-1=0
x=1
ОДЗ: x>3; 2x^2 -x>0 x(2x -1)>0 x>0 2x>1 x>1/2
0 и 1 не удовл. усл.
ответ: Решений нет
3. log_1/2 (x)= log_1/2 (x+3) - log_1/2 (x+1)
log_1/2 (x)= log_1/2 ((x+3)/(x+1))
x=(x+3)/(x+1)
x(x+1)/(x+1) = (x+3)/(x+1)
(x^2 +x - x -3)/(x+1) = 0
x^2 -3 = 0
x^2=3
x= +- корень из 3
x+1 (зачеркнутое равно) 0
x (зачеркнутое равно) -1
ОДЗ: x>0; x+3>0 x>-3; x+1>0 x>-1
- корень из 3 - не удовл. усл.
ответ: корень из 3