x^2+6x+9<0,
(x+3)^2<0,
нет решений; (x+3)^2≥0, x∈R
-x^2+6x-5≥0,
a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,
-x^2+6x-5=0,
x^2-6x+5=0,
по теореме Виета х_1=1, x_2=5,
1≤x≤5,
x∈[1;5]
x^2-4x+3≥0,
a=1>0 - ветви параболы направлены вверх,
x^2-4x+3=0,
x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,
x≤1, x≥3,
x∈(-∞;1]U[3;+∞)
x^2-6x+8≤0,
a=1>0 - ветви параболы - вверх,
x^2-6x+8=0,
x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,
2≤x≤4,
x∈[2;4]
Объяснение:
Пусть х - скорость теплохода в неподвижной воде, тогда его скорость по течению равна х+4, а против течения х-4.
Время движения по течению 384/(х+4), время движения против течения 384/(х-4))
Составим уравнение 384/(х+4) +384/(х-4) + 8 = 48
96/(х+4) +96/(х-4) = 10
96х - 96*4 + 96х +96*4 = 10(х^2-16)
10 x^2 - 192x - 160 = 0
5 x^2 - 96x - 80 = 0
D =96^2 +4*80*5 = 9216 + 1600 = 10816, sqrt(D) = 104
x1 = (96+104)/10 = 20
x2 = (96-104)/10 <0 отрицательной скорости не может быть
ответ: скорость теплохода в неподвижной воде равна 20км/ч
x^2+6x+9<0,
(x+3)^2<0,
нет решений; (x+3)^2≥0, x∈R
-x^2+6x-5≥0,
a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,
-x^2+6x-5=0,
x^2-6x+5=0,
по теореме Виета х_1=1, x_2=5,
1≤x≤5,
x∈[1;5]
x^2-4x+3≥0,
a=1>0 - ветви параболы направлены вверх,
x^2-4x+3=0,
x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,
x≤1, x≥3,
x∈(-∞;1]U[3;+∞)
x^2-6x+8≤0,
a=1>0 - ветви параболы - вверх,
x^2-6x+8=0,
x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,
2≤x≤4,
x∈[2;4]
Объяснение:
Пусть х - скорость теплохода в неподвижной воде, тогда его скорость по течению равна х+4, а против течения х-4.
Время движения по течению 384/(х+4), время движения против течения 384/(х-4))
Составим уравнение 384/(х+4) +384/(х-4) + 8 = 48
96/(х+4) +96/(х-4) = 10
96х - 96*4 + 96х +96*4 = 10(х^2-16)
10 x^2 - 192x - 160 = 0
5 x^2 - 96x - 80 = 0
D =96^2 +4*80*5 = 9216 + 1600 = 10816, sqrt(D) = 104
x1 = (96+104)/10 = 20
x2 = (96-104)/10 <0 отрицательной скорости не может быть
ответ: скорость теплохода в неподвижной воде равна 20км/ч