Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1. ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
Из равенства xy = yx следует, что делители чисел x и y одни и те же, то есть То же самое равенство показывает, что a1y = b1x, ..., any = bnx. Пусть для определённости x < y. Тогда из записанных равенств следует, что a1 < b1, ..., an < bn, то есть y = kx, где k – целое число. Подставляя равенство y = kx в исходное равенство xy = yx, получаем xkx = (kx)x, то есть xk–1 = k. По предположению k > 1, а значит, x > 1. Ясно, что 22–1 = 2. Легко также проверить, что если x > 2 или k > 2, то xk–1 > k.
x1+x4=9
x1+x6=8
x2+x5=8
x2+x3=9
x3+x6=6
x4+x7=4
x5+x7=4
Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1.
ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
Из равенства xy = yx следует, что делители чисел x и y одни и те же, то есть То же самое равенство показывает, что a1y = b1x, ..., any = bnx. Пусть для определённости x < y. Тогда из записанных равенств следует, что a1 < b1, ..., an < bn, то есть y = kx, где k – целое число. Подставляя равенство y = kx в исходное равенство xy = yx, получаем xkx = (kx)x, то есть xk–1 = k. По предположению k > 1, а значит, x > 1. Ясно, что 22–1 = 2. Легко также проверить, что если x > 2 или k > 2, то xk–1 > k.
ответ
{2, 4}.