Геометрическая прогрессия это последовательность чисел где каждое следующее получается из предыдущего умножением на постоянное число (q) называемое знаменателем.
формула для вычисления n-го члена геометрической прогрессии:
a(n) = a1q^(n − 1)
формула для вычисления суммы n членов прогрессии:
Sn=a1*(q^n-1)/(q-1)
где
а1 - первый член прогрессии
q- знаменатель прогрессии (постоянное число)
n - количество членов прогрессии
Sn=6*(2^7-1)/(2-1)=762
Геометрическая прогрессия это последовательность чисел где каждое следующее получается из предыдущего умножением на постоянное число (q) называемое знаменателем.
формула для вычисления n-го члена геометрической прогрессии:
a(n) = a1q^(n − 1)
формула для вычисления суммы n членов прогрессии:
Sn=a1*(q^n-1)/(q-1)
где
а1 - первый член прогрессии
q- знаменатель прогрессии (постоянное число)
n - количество членов прогрессии
Sn=6*(2^7-1)/(2-1)=762