Периметр треугольника ABC равен 8 см, периметр треугольника DEF равен 10 см.
Докажи, что периметр шестиугольника PKLMNR меньше 9 см.
1. Рассмотри треугольники PAK, KDL, LBM, MEN, NCR и RFP, напиши для каждого из них неравенство треугольника для сторон, которые также являются сторонами шестиугольника:
PK < PA +
;
KL <
+
;
<
+
;
<
+
;
<
+
;
<
+
.
2. Если сложить левые и правые стороны правильных неравенств, то получится правильное неравенство.
Которые из величин задания получились в левой стороне после сложения?
Периметр треугольника ABC
Периметр шестиугольника PKLMNR
Удвоенный периметр шестиугольника PKLMNR
Периметр треугольника DEF
Удвоенный периметр треугольника ABC
Удвоенный периметр треугольника DEF
3. Если к обеим сторонам правильного неравенства добавить одну и ту же величину, то получится правильное неравенство.
Добавь к обеим сторонам полученного в предыдущем шаге правильного неравенства PK+KL+LM+MN+NR+RP.
Которые из величин задания получились в левой стороне после сложения?
Удвоенный периметр шестиугольника PKLMNR
Удвоенный периметр треугольника ABC
Периметр треугольника DEF
Удвоенный периметр треугольника DEF
Периметр треугольника ABC
Периметр шестиугольника PKLMNR
4. Которые из величин задания получились в правой стороне после сложения?
Периметр треугольника DEF
Удвоенный периметр треугольника DEF
Удвоенный периметр шестиугольника PKLMNR
Периметр шестиугольника PKLMNR
Удвоенный периметр треугольника ABC
Периметр треугольника ABC
5. Чему равна правая сторона полученного неравенства, если использовать данные числовые значения?
ответ:
.
6. Что необходимо сделать с обеими сторонами полученного неравенства, чтобы доказать, что периметр шестиугольника PKLMNR меньше 9 см?
Вычитать 2
Невозможно доказать
Умножить на 2
Добавить 2
Делить на 2
x 2-29x+180=0
Было найдено два решения :
x = 20
x = 9
Пошаговое решение :
Шаг 1 :
Попытка факторинга путем разделения среднего срока
1.1 Факторинг x 2-29x+180
Первый член равен, x 2 его коэффициент равен 1 .
Средний срок составляет, - 29x его коэффициент составляет -29 .
Последний член, "константа", равен +180
Шаг-1 : умножьте коэффициент первого члена на константу 1 • 180 = 180
Шаг-2 : Найдите два фактора 180, сумма которых равна коэффициенту среднего члена, который равен -29 .
-180 + -1 = -181
-90 + -2 = -92
-60 + -3 = -63
-45 + -4 = -49
-36 + -5 = -41
-30 + -6 = -36
-20 + -9 = -29 Вот и все.
Шаг 3 : переписать многочлен разделить на средне перспективу, используя два фактора нашли в шаге 2 выше, -20 и -9
х2 - 20х - 9Х - 180
Шаг 4 : Складываем первые 2 условия, вытаскивая, как факторы :
х • (х-20)
складываем последние 2 условия, вытаскивая общие факторы :
9 • (х-20)
Шаг 5 : складываем четыре круга Шаг 4 :
(х-9) • (х-20)
, который является желаемым факторизации
Уравнение в конце шага 1 :
(x-9) • (x - 20) = 0
Шаг 2 :
Теория-корни продукта :
2.1 произведение нескольких членов равно нулю.
Теперь мы будем решать каждый член = 0 отдельно
, другими словами, мы будем решать столько уравнений, сколько существует членов в произведении
любое решение члена = 0 решает также произведение = 0.
Решение одного переменного уравнения :
2.2 решить : x-9 = 0
Добавить 9 к обеим сторонам уравнения:
x = 9
Решение одного переменного уравнения :
2.3 решить : x-20 = 0
Добавить 20 к обеим сторонам уравнения :
x = 20
.
Для любой параболы Ax 2 +Bx+C координата x вершины задается через-B / (2A) . В нашем случае координата x равна 14.5000
Подключаясь к формуле параболы 14.5000 для x, мы можем вычислить координату y :
y = 1.0 * 14.50 * 14.50 - 29.0 * 14.50 + 180.0
или y = -30.250
Парабола, графическая вершина и X-перехваты :
Корневой участок для : У = Х2-29-кратным+180
оси симметрии (пунктирная) {х}={14.50}
вершин в {Х,Y} = {14.50,-30.25}
х -перехватывает (корень) :
корень 1 в {Х,Y} = { 9.00, 0.00}
корень 2 в {Х,Y} = {20.00, 0.00}
Решите квадратичное уравнение, заполнив квадрат
3.2 решение x 2-29x+180 = 0 путем заполнения квадрата .
Отнимите 180 от обеих сторон уравнения :
х2-29 раз = -180
сейчас умно: возьмите коэффициент х , который 29 , делим на два, что 29/2 , и, наконец, это дает 841/4
добавить 841/4 с обеих сторон :
с правой стороны мы имеем :
-180 + 841/4 или, (-180/1)+(841/4)
Общим знаменателем двух дробей 4 сложения (-720/4)+(841/4) дает 121/4
поэтому добавлять к обеим сторонам, мы, наконец, получаем :
х2-29 раз+(841/4) = 121/4
добавление 841/4 завершил левой стороны в идеальный квадрат :
х2-29x+(841/4) =
(x-(29/2)) • (x-(29/2)) =
(x-(29/2)) 2
вещи, равные одной и той же вещи, также равны друг другу. Поскольку
x 2-29x+(841/4) = 121/4 и
x 2-29x+(841/4) = (x-(29/2)) 2
, то, согласно закону транзитивности,
(x-(29/2)) 2 = 121/4
мы будем называть это уравнение эквалайзером. #3.2.1
принцип квадратного корня говорит, что когда две вещи равны, их квадратные корни равны.
Обратите внимание, что квадратный корень из
(x-(29/2)) 2 равен
(x-(29/2)) 2/2 =
(x-(29/2)) 1 =
x-(29/2)
теперь, применяя принцип квадратного корня к эквалайзеру. #3.2.1 получаем:
x-(29/2) = √ 121/4
добавляем 29/2 к обеим сторонам, чтобы получить:
x = 29/2 + √ 121/4
Поскольку квадратный корень имеет два значения, один положительный, а другой отрицательный
x 2-29x + 180 = 0
имеет два решения:
x = 29/2 + √ 121/4
или
x = 29/2 - √ 121/4
обратите внимание, что √ 121/4 можно записать как
√ 121 / √ 4, что составляет 11 / 2
Решите квадратичное уравнение, используя квадратичную формулу
3.3 решение x 2-29x+180 = 0 по квадратичной Формуле .
По квадратичной Формуле, х , раствор для топор2+ВХ+с = 0 , Где А, B и с - числа, часто называемых коэффициентов, определяется по формуле :
- Б ± √ Б2-4AC
х =
2А
в нашем случае а = 1
Б = -29
С = 180
соответственно Б2 - 4AC =
841 - 720 =
121
применение квадратичной формулы :
29 ± √ 121
х =
2
может √ 121 быть упрощена ?
- Да ! Первичная факторизация 121 составляет
11 * 11
, Чтобы иметь возможность удалить что-то из-под радикала, должно быть 2 экземпляра этого (потому что мы берем квадратный т. е. второй корень).
√ 121 = √ 11•11 =
± 11 • √ 1 =
± 11
, Так что теперь мы ищем:
х = ( 29 ± 11) / 2
два реальных решения:
х =(29+√121)/2=(29+11)/2= 20.000
или:
Х =(29-√121)/2=(29-11)/2= 9.000
Было найдено два решения :
x = 20
x = 9
Объяснение:
Когда выбираем первый пирожок, вероятность того, что он будет с рыбой, равна (делим количество рыбных пирожков на количество всех пирожков).
Когда один рыбный пирожок уже выбран, их на тарелке останется всего 6, а общее количество пирожков будет равно 15. Поэтоу вероятность вытянуть в данный момент рыбный пирожок равна .
А поскольку два события, описанные выше, должны произойти вместе, то что бы найти вероятность того, что они произойдут вместе, нужно перемножить вероятности отдельных событий между собой:
P.S. По-моему, рыбные пирожки отвратительные на вкус, я бы лучше считал вероятность того, что среди двух наугад вытянутых пирожков не окажется ни одного рыбного))