2. На фото))
3. Пусть одна сторона треугольника = х, тогда вторая - х+7
Площадь треугольника ищем по формуле: S=первая сторона*вторую сторону, можем записать уравнение:
х*(х+7)=44
х^2+7х=44
х^2+7х-44=0
Получаем квадратное уравнение, решив которое получим 2 корня: х1=-11(не подходит, так как длина стороны не может быть отрицательным числом), х2=4
Значит, первая сторона равна - 4 см, а вторая-4+7=11 (см).
4. По теореме Виета:
-6+х2=-b/2
-6*x2=-6/2
Находим х2 с второго выражения
-6*x2=-3
х2=1/2
Теперь ищем b с первого выражения
-6+1/2=-b/2
-11/2=-b/2
-11=-b
b=11
5. Уравнение имеет 1-н корень если дискриминант = 0.
D=16-4*2*a=0. 16-8a=0. 8a=16. a=2
2. На фото))
3. Пусть одна сторона треугольника = х, тогда вторая - х+7
Площадь треугольника ищем по формуле: S=первая сторона*вторую сторону, можем записать уравнение:
х*(х+7)=44
х^2+7х=44
х^2+7х-44=0
Получаем квадратное уравнение, решив которое получим 2 корня: х1=-11(не подходит, так как длина стороны не может быть отрицательным числом), х2=4
Значит, первая сторона равна - 4 см, а вторая-4+7=11 (см).
4. По теореме Виета:
-6+х2=-b/2
-6*x2=-6/2
Находим х2 с второго выражения
-6*x2=-6/2
-6*x2=-3
х2=1/2
Теперь ищем b с первого выражения
-6+1/2=-b/2
-11/2=-b/2
-11=-b
b=11
5. Уравнение имеет 1-н корень если дискриминант = 0.
D=16-4*2*a=0. 16-8a=0. 8a=16. a=2
х = 10 000 * 30 / 100, х = 3 000 (р) - 30%
2) 10 000 + 3 000 = 13 000 (р) - стоимость в апреле
Декабрь:
Теперь 13 000 р. - составляет 100%.
1) Составляем пропорцию: 13 000 / х = 100 / 40
х = 13 000 * 40 / 100, х = 5 200 (р) - 40%
2) 13 000 - 5 200 = 7 800 (р) - стоимость в декабре
б) 10 000 - первоначальная стоимость
7 800 - конечная стоимость
Из первоначальной стоимость вычитаем конечную.
10 000 - 7 800 = 2 200 (р) - разница в стоимости
Снова составим пропорцию:
10 000 / 2 200 = 100 / х
х = 22%