Уравнения в этом смысле не будут иметь решения, если дискриминант будет меньше 0. Найдем же его!
а) D = b^2-4*a*c
D=16p^2-4*(p-15)*(-3)=16p^2 + 12p - 180
(16p^2 + 12p - 180) должно быть меньше 0. Найдем значение p при 16p^2 + 12p - 180 = 0.
По формуле:
D/4= 36-16*(-180)=2916
p1=(-6+54)/16=3
p2=(-6-54)/16=-3.75
Есть такая формула рахложения квадратного трехчлена на множители : ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) .
16(p-3)(p+3.75)=0|:16
(p-3)(p+3.75)=0
Если произведение равно 0, то хотя бы один множитель равен 0. Значит :
p-3=0 или p+3.75=0
p=3 p=-3.75
При этих значениях дискриминат равен 0. Нам нужно,чтобы он был меньше. Значит при (p-3)(p+3.75)< 0
Следовательно, -3.75<p<3
Остальные аналогично.
1
2x² - 13x + 19 ≤ (x-3)²
2x² - 13x + 19 ≤ x² - 6x + 9
x² - 7x + 10 = 0 D = 49 - 40 = 9
(x - 5)·(x - 2) ≤ 0
1) x ≤ 5 ⇒ x ∈ [2 ; 5]
x ≥ 2
2) x ≥ 5
x ≤ 2 ⇒ x ∈ ( -∞ ; 2] ∨ [5 ; + ∞)
ответ: x ∈ [2 ; 5]
x ∈ ( -∞ ; 2] ∨ [5 ; + ∞)
2
7x² + 12x + 3 ≥ (3x-1)*(3x+5)
7x² + 12x + 3 ≥ 9x² + 12x - 5
2x² ≤ 8
x² ≤ 4
x ≥ -2
x ≤ 2 ответ: x ∈ [-2 ; 2]
3
1/(x + 2) ≥ 1 ОДЗ (х + 2) ≠ 0
1/(x + 2) - 1 ≥ 0
(х+1) / (х+2) ≤ 0
1) x ≥ -1
x ≤ -2 ⇒ x ∈ ( - ∞ ; -2) ∨ [-1 ; + ∞)
(х + 2) ≠ 0
2) x ≥ -2
x ≤ -1 ⇒ x ∈ (-2 ; -1]
ответ: x ∈ ( - ∞ ; -2) ∨ [-1 ; + ∞)
x ∈ (-2 ; -1]
Уравнения в этом смысле не будут иметь решения, если дискриминант будет меньше 0. Найдем же его!
а) D = b^2-4*a*c
D=16p^2-4*(p-15)*(-3)=16p^2 + 12p - 180
(16p^2 + 12p - 180) должно быть меньше 0. Найдем значение p при 16p^2 + 12p - 180 = 0.
По формуле:
D/4= 36-16*(-180)=2916
p1=(-6+54)/16=3
p2=(-6-54)/16=-3.75
Есть такая формула рахложения квадратного трехчлена на множители : ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) .
16(p-3)(p+3.75)=0|:16
(p-3)(p+3.75)=0
Если произведение равно 0, то хотя бы один множитель равен 0. Значит :
p-3=0 или p+3.75=0
p=3 p=-3.75
При этих значениях дискриминат равен 0. Нам нужно,чтобы он был меньше. Значит при (p-3)(p+3.75)< 0
Следовательно, -3.75<p<3
Остальные аналогично.
1
2x² - 13x + 19 ≤ (x-3)²
2x² - 13x + 19 ≤ x² - 6x + 9
x² - 7x + 10 = 0 D = 49 - 40 = 9
(x - 5)·(x - 2) ≤ 0
1) x ≤ 5 ⇒ x ∈ [2 ; 5]
x ≥ 2
2) x ≥ 5
x ≤ 2 ⇒ x ∈ ( -∞ ; 2] ∨ [5 ; + ∞)
ответ: x ∈ [2 ; 5]
x ∈ ( -∞ ; 2] ∨ [5 ; + ∞)
2
7x² + 12x + 3 ≥ (3x-1)*(3x+5)
7x² + 12x + 3 ≥ 9x² + 12x - 5
2x² ≤ 8
x² ≤ 4
x ≥ -2
x ≤ 2 ответ: x ∈ [-2 ; 2]
3
1/(x + 2) ≥ 1 ОДЗ (х + 2) ≠ 0
1/(x + 2) - 1 ≥ 0
(х+1) / (х+2) ≤ 0
1) x ≥ -1
x ≤ -2 ⇒ x ∈ ( - ∞ ; -2) ∨ [-1 ; + ∞)
(х + 2) ≠ 0
2) x ≥ -2
x ≤ -1 ⇒ x ∈ (-2 ; -1]
(х + 2) ≠ 0
ответ: x ∈ ( - ∞ ; -2) ∨ [-1 ; + ∞)
x ∈ (-2 ; -1]