Перед нами две параллельные прямые, которые пересечены секущей. Известно, что угол <1=200. Найти другие углы. <3= , так как <1 и <3 ; <4= , так как <1 и <4 ; <5= , так как <5 и <3 ; <8= , так как <8 и <4 ; <7= , так как <7 и <3 .
Корни квадратные существуют, когда подкоренные выражения в первом неотрицательные, во втором корне положительные, значит, ОДЗ уравнения - все значения, при которых х²-2х-1 >0, корнем левой части являются числа 1-√2 и 1+√2, которые разбивают область определения на три промежутка, в обл. определения попадают те, для которых подкоренное выражение строго больше нуля. Согласно методу интервалов , устанавливаем знаки, и выбираем те из них интервалы, которые дают положительный ответ,
это х∈(-∞;1-√2)∪(1+√2;+∞)
Пусть √(х²-2х-1)=в больше нуля, тогда
в=14/в-5; в²+5в-14=0
По теореме, обратной теореме Виета, сумма корней -5, а произведение -14, это числа -7, но этот корень не может быть ответом, поскольку отрицательный, и число 2. Возвратимся к иксу.
√(х²-2х-1)=2, возведем обе части уравнения в квадрат, помня, что при этом могут появиться посторонние корни. Поэтому обязательно необходимо проверить полученные корни.
Если прямая касается параболы, то коэффициент a можно рассчитать как минимум 3мя разными
1)Дискриминант
-----
Если прямая касается параболы тогда дискриминант этого уравнения будет равняться нулю.
ответ 7/4
2)Теорема виета
Не сильно отличается от первого:
если прямая касается параболы, тогда квадратный трехчлен имеет всего один корень, тогда по т. виета:
-------------
из 1:
подставим в 2:
-------------
ответ 7/4 (менее быстрый метод но зато нам сразу будет известна точка касания)
3)Производная
если прямая касается параболы, тогда значение производной прямой в точке касания равно значению производной параболы в точке касания:
подставим в первое:
a=7/4
ответ 7/4 (Опять же не самый быстрый но зато мы сразу узнаем координаты касания)
Корни квадратные существуют, когда подкоренные выражения в первом неотрицательные, во втором корне положительные, значит, ОДЗ уравнения - все значения, при которых х²-2х-1 >0, корнем левой части являются числа 1-√2 и 1+√2, которые разбивают область определения на три промежутка, в обл. определения попадают те, для которых подкоренное выражение строго больше нуля. Согласно методу интервалов , устанавливаем знаки, и выбираем те из них интервалы, которые дают положительный ответ,
это х∈(-∞;1-√2)∪(1+√2;+∞)
Пусть √(х²-2х-1)=в больше нуля, тогда
в=14/в-5; в²+5в-14=0
По теореме, обратной теореме Виета, сумма корней -5, а произведение -14, это числа -7, но этот корень не может быть ответом, поскольку отрицательный, и число 2. Возвратимся к иксу.
√(х²-2х-1)=2, возведем обе части уравнения в квадрат, помня, что при этом могут появиться посторонние корни. Поэтому обязательно необходимо проверить полученные корни.
х²-2х-1=4, х²-2х-5=0
х₁,₂=1±√6
Проверка. √((1+√6)²-2*(1+√6)-1)=√(1+2√6+6-2-2√6-1)=√4=2
Значит, левая часть равна двум, правая 14/2-5=2, указанный корень является корнем исходного уравнения, проверим второй корень.
Правая часть √((1-√6)²-2*(1-√6)-1)=√(1-2√6+6-2+2√6-1)=√4=2
Левая часть 14/2-5=2
Проверкой убедились, что оба корня являются корнями исходного уравнения.
ответ. 1±√6