Пусть момент прихода юноши - это x, момент прихода девушки - y. При этом 0 соответствует 12 часам дня, а 1 - 12:05 и так далее до 12, соответствуещего 13:00. На координатной плоскости множество всех возможных событий - это квадрат, заданный условиями . Теперь найдем, каким точкам соответствует событие "встреча состоялась". Дополнительно ко всему нижеследующему налагается условие, что точки вне квадрата не рассматриваются. 1) Условие того, что девушка не уйдет раньше прихода юноши: . Заметим, что условие также выполняется, если юноша приходит первым, т.к. тогда правая часть отрицательна. 2) Аналогично рассматриваем условие, что юноша не уйдет раньше: .
Оба условия должны выполняться одновременно, поэтому фигура, составленная из точек, для которых встреча происходит - это промежуток между прямыми y=x-1; y=x+6, на рисунке отмечена синим. Искомая вероятность равна отношению площади этой фигуры к площади квадрата. Это отношение можно искать по-разному, ответ получается .
1) Условие того, что девушка не уйдет раньше прихода юноши: . Заметим, что условие также выполняется, если юноша приходит первым, т.к. тогда правая часть отрицательна.
2) Аналогично рассматриваем условие, что юноша не уйдет раньше: .
Оба условия должны выполняться одновременно, поэтому фигура, составленная из точек, для которых встреча происходит - это промежуток между прямыми y=x-1; y=x+6, на рисунке отмечена синим. Искомая вероятность равна отношению площади этой фигуры к площади квадрата. Это отношение можно искать по-разному, ответ получается .
ответ: 27*x^3-8*y^3
Решаем по действиям:1. (3*x-2*y)*(9*x^2+6*x*y+4*y^2)=27*x^3-8*y^3 (3*x-2*y)*(9*x^2+6*x*y+4*y^2)=3*x*9*x^2+3*x*6*x*y+3*x*4*y^2-2*y*9*x^2-2*y*6*x*y-2*y*4*y^2 1.1. 3*9=27 X3 _9_ 27 1.2. x*x^2=x^3 x*x^2=x^(1+2) 1.2.1. 1+2=3 +1 _2_ 3 1.3. 3*6=18 X3 _6_ 18 1.4. x*x=x^2 x*x=x^(1+1) 1.4.1. 1+1=2 +1 _1_ 2 1.5. 3*4=12 X3 _4_ 12 1.6. 2*9=18 X2 _9_ 18 1.7. 18*x^2*y-18*y*x^2=0 1.8. 2*6=12 X2 _6_ 12 1.9. y*y=y^2 y*y=y^(1+1) 1.9.1. 1+1=2 +1 _1_ 2 1.10. 12*x*y^2-12*y^2*x=0 1.11. 2*4=8 X2 _4_ 8 1.12. y*y^2=y^3 y*y^2=y^(1+2) 1.12.1. 1+2=3 +1 _2_ 3
Решаем по шагам:1. 27*x^3-8*y^3 1.1. (3*x-2*y)*(9*x^2+6*x*y+4*y^2)=27*x^3-8*y^3 (3*x-2*y)*(9*x^2+6*x*y+4*y^2)=3*x*9*x^2+3*x*6*x*y+3*x*4*y^2-2*y*9*x^2-2*y*6*x*y-2*y*4*y^2 1.1.1. 3*9=27 X3 _9_ 27 1.1.2. x*x^2=x^3 x*x^2=x^(1+2) 1.1.2.1. 1+2=3 +1 _2_ 3 1.1.3. 3*6=18 X3 _6_ 18 1.1.4. x*x=x^2 x*x=x^(1+1) 1.1.4.1. 1+1=2 +1 _1_ 2 1.1.5. 3*4=12 X3 _4_ 12 1.1.6. 2*9=18 X2 _9_ 18 1.1.7. 18*x^2*y-18*y*x^2=0 1.1.8. 2*6=12 X2 _6_ 12 1.1.9. y*y=y^2 y*y=y^(1+1) 1.1.9.1. 1+1=2 +1 _1_ 2 1.1.10. 12*x*y^2-12*y^2*x=0 1.1.11. 2*4=8 X2 _4_ 8 1.1.12. y*y^2=y^3 y*y^2=y^(1+2) 1.1.12.1. 1+2=3 +1 _2_ 3
Выражение: (3*x-2*y+1)^2
ответ: 9*x^2-12*x*y+6*x+4*y^2-4*y+1
Решаем по действиям:1. (3*x-2*y+1)^2=9*x^2-12*x*y+6*x+4*y^2-4*y+1 (3*x-2*y+1)^2=((3*x-2*y+1)*(3*x-2*y+1)) 1.1. (3*x-2*y+1)*(3*x-2*y+1)=9*x^2-12*x*y+6*x+4*y^2-4*y+1 (3*x-2*y+1)*(3*x-2*y+1)=3*x*3*x-3*x*2*y+3*x*1-2*y*3*x+2*y*2*y-2*y*1+1*3*x-1*2*y+1*1 1.1.1. 3*3=9 X3 _3_ 9 1.1.2. x*x=x^2 x*x=x^(1+1) 1.1.2.1. 1+1=2 +1 _1_ 2 1.1.3. 3*2=6 X3 _2_ 6 1.1.4. 2*3=6 X2 _3_ 6 1.1.5. -6*x*y-6*y*x=-12*x*y 1.1.6. 2*2=4 X2 _2_ 4 1.1.7. y*y=y^2 y*y=y^(1+1) 1.1.7.1. 1+1=2 +1 _1_ 2 1.1.8. 3*x+3*x=6*x 1.1.9. -2*y-2*y=-4*y
Решаем по шагам:1. 9*x^2-12*x*y+6*x+4*y^2-4*y+1 1.1. (3*x-2*y+1)^2=9*x^2-12*x*y+6*x+4*y^2-4*y+1 (3*x-2*y+1)^2=((3*x-2*y+1)*(3*x-2*y+1)) 1.1.1. (3*x-2*y+1)*(3*x-2*y+1)=9*x^2-12*x*y+6*x+4*y^2-4*y+1 (3*x-2*y+1)*(3*x-2*y+1)=3*x*3*x-3*x*2*y+3*x*1-2*y*3*x+2*y*2*y-2*y*1+1*3*x-1*2*y+1*1 1.1.1.1. 3*3=9 X3 _3_ 9 1.1.1.2. x*x=x^2 x*x=x^(1+1) 1.1.1.2.1. 1+1=2 +1 _1_ 2 1.1.1.3. 3*2=6 X3 _2_ 6 1.1.1.4. 2*3=6 X2 _3_ 6 1.1.1.5. -6*x*y-6*y*x=-12*x*y 1.1.1.6. 2*2=4 X2 _2_ 4 1.1.1.7. y*y=y^2 y*y=y^(1+1) 1.1.1.7.1. 1+1=2 +1 _1_ 2 1.1.1.8. 3*x+3*x=6*x 1.1.1.9. -2*y-2*y=-4*y