ответ:Пусть S - сумма всех чисел. Т.к. сумма чисел в каждой строке и в каждом столбце равны, то сумма одной строки или одного столбца равна .
Возьмём сумму первых двух верхних строчек, которая равна . В эту сумму входит сумма чисел верхнего левого квадрата 2х2, равная 10. Значит, сумма чисел в прямоугольнике высотой 2 и длиной 3 в верхнем правом углу равна .
Возьмём сумму нижних трёх строчек, равную , и в которую входит нижний правый квадрат 3х3 с суммой 15. Уберём из этих нижних трёх строчек квадрат 3х3. Останется прямоугольник высотой 3 и длиной 2, по площади равный верхнему прямоугольнику 2х3, и в которых суммы чисел тоже равны. В нижнем оставшемся прямоугольнике сумма чисел равна .
Приравниваем эти суммы и считаем S:
ответ: 25
ЗЫ. ответ означает, что сумма оставшихся областей равна нулю. А это в свою очередь говорит, что там либо все нули, либо есть отрицательные числа.
sinx+sin
2
(x)+sin
3
(x)=cosx+cos
2
x+cos
3
x
(sinx-cosx)+(sin^{2}x-cos^{2}x)+(sin^{3}x-cos^{3}x)=0(sinx−cosx)+(sin
2
x−cos
2
x)+(sin
3
x−cos
3
x)=0
(sinx-cosx)+(sinx-cosx)(sinx+cosx)+(sinx-cosx)(sin^{2}x+sinx*cosx+cos^{2}x)=0(sinx−cosx)+(sinx−cosx)(sinx+cosx)+(sinx−cosx)(sin
2
x+sinx∗cosx+cos
2
x)=0
(sinx-cosx)(1+sinx+cosx+1+sinx*cosx)=0(sinx−cosx)(1+sinx+cosx+1+sinx∗cosx)=0
(sinx-cosx)(2+sinx+cosx+sinx*cosx)=0(sinx−cosx)(2+sinx+cosx+sinx∗cosx)=0
1) sinx=cosxsinx=cosx
tgx=1tgx=1
x= \frac{ \pi }{4} + \pi kx=
4
π
+πk , k∈Z
2) 2+sinx+cosx+sinx*cosx=02+sinx+cosx+sinx∗cosx=0
(1+cosx)(1+sinx)=-1(1+cosx)(1+sinx)=−1 - решений нет, т.к.:
\left \{ {1+cosx \geq 0} \atop {1+sinx \geq 0}} \right.
Левая часть не может быть отрицательной не при каких х.
ответ: x= \frac{ \pi }{4} + \pi kx=
4
π
+πk , k∈Z
Объяснение:
.,,
ответ:Пусть S - сумма всех чисел. Т.к. сумма чисел в каждой строке и в каждом столбце равны, то сумма одной строки или одного столбца равна .
Возьмём сумму первых двух верхних строчек, которая равна . В эту сумму входит сумма чисел верхнего левого квадрата 2х2, равная 10. Значит, сумма чисел в прямоугольнике высотой 2 и длиной 3 в верхнем правом углу равна .
Возьмём сумму нижних трёх строчек, равную , и в которую входит нижний правый квадрат 3х3 с суммой 15. Уберём из этих нижних трёх строчек квадрат 3х3. Останется прямоугольник высотой 3 и длиной 2, по площади равный верхнему прямоугольнику 2х3, и в которых суммы чисел тоже равны. В нижнем оставшемся прямоугольнике сумма чисел равна .
Приравниваем эти суммы и считаем S:
ответ: 25
ЗЫ. ответ означает, что сумма оставшихся областей равна нулю. А это в свою очередь говорит, что там либо все нули, либо есть отрицательные числа.
Объяснение: