Можно эту задачу решить с уравнения: Пусть х (км/ч)-собственная скорость лодки, тогда х-3 (км/ч) -скорость лодки против течения реки; х+3 (км/ч)-скорость лодки по течению реки; 4(х-3) (км)-расстояние, которое лодка проплыла против течения реки; 6(х+3) (км)-расстояние, которое проплыла лодка по течению реки; 4(х-3)+6(х+3) (км)-расстояние, которое проплыла лодка. Т.к. всего лодкой пройдено расстояние 126км, то составим и решим уравнение: 4(х-3)+6(х+3)=126 4х-12+6х+18=126 10х+6=126 10х=126-6 10х=120 х=120:10 х=12 ответ: 12 км/ч.
Вместо х подставляем 1-2х
И решаем неравенство
Так как дробь меньше 0, то у числителя и знаменателя разные знаки.
1)
{ 2x^2 - 5x + 3 ≤ 0
{ -6x + 3 + √2 + √5 > 0
Раскладываем на множители 1 неравенство
{ (x - 1)(2x - 3) ≤ 0
{ 6x < 3 + √2 + √5
Получаем
{ x ∈ [1; 3/2]
{ x < (3 + √2 + √5)/6 ≈ 1,108 < 3/2
Решение: x1 ∈[1; (3 + √2 + √5)/6)
2)
{ 2x^2 - 5x + 3 ≥ 0
{ -6x + 3 + √2 + √5 < 0
Решаем точно также
{ (x - 1)(2x - 3) ≥ 0
{ 6x > 3 + √2 + √5
Получаем
{ x ∈ (-oo; 1] U [3/2; +oo)
{ x > (3 + √2 + √5)/6 ≈ 1,108 < 3/2
Решение: x ∈ [3/2; +oo)
ответ: x ∈ [1; (3 + √2 + √5)/6) U [3/2; +oo)