7х+3у=1, 2х-6у=-10 выражаем в каждом уравнение у через х: 3у=1-7х, у=1-7х/3 -6у=-10-2х, у=10+2х/6 у= 1-7х 3 у= 5+х 3 Это линейные функции, график "прямая" Строим график 1 функции х| 0 | 1| y|1/3|-2| построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2) соединили эти точки прямой. Строим график 2 функции: х| 0 | 1 | y|1 1/3| 2 | В то же прямоугольной системе координат строим точки М(0;1 1/3),Р(1;2) соединяем точки прямой. Прямые пересекаются в точке Д(-1/2;1 1/2) ответ: (-1/2; 1 1/2)
По условию известно, что режимов освещения было не больше 5. То есть их могло быть:
1, 2, 3, 4, 5
Так как существует также полное отключение освещения, всего состояний может быть:
2, 3, 4, 5, 6
Найдем, сколько раз нужно нажать на кнопку, чтобы независимо от точного количества режимов вернуться в тот же самый режим. Для этого, нужно найти число, которое делится на 2, 3, 4, 5, 6 без остатка. То есть, другими словами нужно найти НОК этих чисел.
Таким образом, если нажать на кнопку 60 раз, то мы перейдем к такому же состоянию, с которого все начиналось.
По условию сейчас включен первый режим, также известно, что именно перед первым режимом идет состояние полного отключения. Значит, нажав на кнопку 60 раз мы вернемся к первом режиму, а если мы нажмем на кнопку на 1 раз меньше, то есть 59 раз, то мы полностью выключим свет.
Найденный является простейшим с той точки зрения, что нажать на кнопку можно и большее количество раз, а именно любое количество, задаваемое формулой , где , и свет также будет отключен.
2х-6у=-10
выражаем в каждом уравнение у через х:
3у=1-7х, у=1-7х/3
-6у=-10-2х, у=10+2х/6
у= 1-7х
3
у= 5+х
3
Это линейные функции, график "прямая"
Строим график 1 функции
х| 0 | 1|
y|1/3|-2|
построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2)
соединили эти точки прямой.
Строим график 2 функции:
х| 0 | 1 |
y|1 1/3| 2 |
В то же прямоугольной системе координат строим точки
М(0;1 1/3),Р(1;2)
соединяем точки прямой.
Прямые пересекаются в точке Д(-1/2;1 1/2)
ответ: (-1/2; 1 1/2)
По условию известно, что режимов освещения было не больше 5. То есть их могло быть:
1, 2, 3, 4, 5
Так как существует также полное отключение освещения, всего состояний может быть:
2, 3, 4, 5, 6
Найдем, сколько раз нужно нажать на кнопку, чтобы независимо от точного количества режимов вернуться в тот же самый режим. Для этого, нужно найти число, которое делится на 2, 3, 4, 5, 6 без остатка. То есть, другими словами нужно найти НОК этих чисел.
Таким образом, если нажать на кнопку 60 раз, то мы перейдем к такому же состоянию, с которого все начиналось.
По условию сейчас включен первый режим, также известно, что именно перед первым режимом идет состояние полного отключения. Значит, нажав на кнопку 60 раз мы вернемся к первом режиму, а если мы нажмем на кнопку на 1 раз меньше, то есть 59 раз, то мы полностью выключим свет.
Найденный является простейшим с той точки зрения, что нажать на кнопку можно и большее количество раз, а именно любое количество, задаваемое формулой , где , и свет также будет отключен.
ответ: нажать на кнопку 59 раз