а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
Объяснение:
4 часа 30 мин=270мин
6 часов 45 мин=405мин
1/270 часть бассейна нальет первый кран за 1 мин
1/405 часть бассейна нальет второй кран за 1 мин
1/405+1/270=5/810=1/162 часть бассейна нальют 2 крана за 1 мин
1:(1/162)=162 мин - время за которое 2 крана наполнят весь бассейн
первый кран был открыт 162 мин
162/270=3/5 - бассейна наполнит первый кран за 162 мин1-3/5=2/5 бассейна нужно наполнить второму крану
2/5 : 1/405=2*405/5*1=810/5=162 мин - Через столько времени бассейн наполнится.
ответ:162 мин. 1-3/5=2/5 бассейна нужно наполнить второму крану
2/5 : 1/405=2*405/5*1=810/5=162 мин - Через столько времени бассейн наполнится.
ответ:162 мин.
а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
2
n(n−1)