Основой конуса является большой круг шара, а его высотой является радиус MO, перпендикулярный плоскости большого круга. Вычислите площадь сферы, которая является границей шара, если площадь боковой поверхности конуса равна 2π см2.
Основою конуса є великий круг кулі, а його висотою є радіус MO, перпендикулярний площині великого круга. Обчисліть площу сфери, яка є границею кулі, якщо площа бічної поверхні конуса дорівнює 2π см2.
36 = (V+2)*t,
35 = V * (t+1/20)
Раскрываем скобки:
36 = Vt+2t
35=Vt+V/20
Вычитаем из второго уравнения первое:
1 = V/20 - 2t
Выражаем скорость:
V/20 = 1 + 2t
V = 20 + 40 t
Подставим это соотношение, например, в первое уравнение:
36=(20+40t+2)t
36 = 40 t^2 + 22 t
40 t^2 + 22 t - 36 = 0
Сокращаем:
20 t ^2 + 11 t - 18 = 0
Решаем квадратное уравнение:
D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо)
t = (-11+-(39,5)) / 40 = {-1,25; 0,7}
Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости:
V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч.
Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
1. a)5 < m < 15; 5*1/5 < 1/5 m < 15*1/5; 1 < 1/5 < 3
b) 5 < -2m < 15; 5*(-2) < -2m < 15*(-2); -10 < -2m < -30; -30 < -2m < -10
c) 5 < m-6 < 15; -5+6 < m-6 < -15+6 ; 1 < m-6 < -9; -9< m-6 < 1
2. a) 2.6 <√7 <2.7; 2.6*2 < 2√7 < 2.7*2 ; 5.2 < √7 < 5.4
b)- 2.6 <-√7 < -2.7; -2,7 < -√7 < -2,6
c) 2.6 <√7 <2.7; 2+2.6 < 2+√7 < 2+2.7; 4.6 < √7 < 4.7
d)2.6 <√7 <2.7; 3-2.6 < 3-√7 <3-2.7; 0.4 <;3-√7 <0.3; 0.3 < 3-√7 < 0.4