У данное тригонометрические выражение, которого обозначим через Т = sin2(180° – α) + sin2(270° – α), хотя об этом явного требования в задании нет.
Применим следующие формулы приведения: sin(180° – α) = sinα и sin(270° – α) = –cosα. Тогда данное тригонометрические выражение Т примет вид: Т = sin2(180° – α) + sin2(270° – α) = (sinα)2 + (–cosα)2 = sin2α + (–1)2 * cos2α = sin2α + cos2α.
Основное тригонометрическое тождество sin2α + cos2α = 1 завершает упрощение: Т = 1.
ответ: sin2(180° – α) + sin2(270° – α) = 1.
У данное тригонометрические выражение, которого обозначим через Т = sin2(180° – α) + sin2(270° – α), хотя об этом явного требования в задании нет.
Применим следующие формулы приведения: sin(180° – α) = sinα и sin(270° – α) = –cosα. Тогда данное тригонометрические выражение Т примет вид: Т = sin2(180° – α) + sin2(270° – α) = (sinα)2 + (–cosα)2 = sin2α + (–1)2 * cos2α = sin2α + cos2α.
Основное тригонометрическое тождество sin2α + cos2α = 1 завершает упрощение: Т = 1.
ответ: sin2(180° – α) + sin2(270° – α) = 1.