Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
1.На девять вакантных мест на должность машиниста претендуют 15 кандидатов, из них 7 женщин, остальные мужчины. Какова вероятность того, что из девяти случайно отобранных кандидатов ровно пять женщин.
решение
Пусть событие А состоит в том, что из 9 отобранных кандидатов 5 женщин. Для решения используем классическое определение вероятности. Общее число исходов будет равно числу которыми можно выбрать 9 человек из 15 кандидатов
Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
1.На девять вакантных мест на должность машиниста претендуют 15 кандидатов, из них 7 женщин, остальные мужчины. Какова вероятность того, что из девяти случайно отобранных кандидатов ровно пять женщин.
решение
Пусть событие А состоит в том, что из 9 отобранных кандидатов 5 женщин. Для решения используем классическое определение вероятности. Общее число исходов будет равно числу которыми можно выбрать 9 человек из 15 кандидатов
n=C⁹₁₅
Число благоприятствующих исходов
m=C⁴₈*C⁵₇: Р(А)=m/n=C⁴₈*C⁵₇/C⁹₁₅=0.294
Объяснение: