Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
-(2(cosπ/3 +isinπ/3))³/√(2(cosπ/4 -isinπ/4))²⁶ =
-2³(cos3*π/3 + isin3*π/3) /2¹³(cos26*π/4 -isin26*π/4) =
-8(cosπ + isinπ) /2¹³(cos13π/2 -isin13π/2) = -8(-1+0)/2¹³(0 -i) =-2³/2¹³i = (1/21⁰)i.
* * * * * *
z =a+ib ; z =r(cosα + i sinα ) ; r =√(a²+b²) ; α =arctq(b/a)
(r(cosα+isinα) ) ^n =r^k(cosnα +i sinnα) ;
(r₁(cosα₁+isinα₁)*r₂(cosα₂+isinα₂) =(r₁*r₂) (cos(α₁+α₂) +isin(α₁+α₂)) ;
(r₁(cosα₁+isinα₁)/r₂(cosα₂+isinα₂) =(r₁/r₂) (cos(α₁-α₂) +isin(α₁-α₂)) ;
z₁ =(1+i√3) ,
модуль этого числа: r₁ =√(1² +(√3)²) =√(1 +3)=2;
аргумент этого числа : tqα =b/a =√3/1=√3 ⇒α=60° или α= π/3 радиан.
z₁ =(1+i√3) =2(cosπ/3 +isinπ/3) .
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная