Определи сумму всех натуральных чисел, не превосходящих 200, которые при делении на 16 имеют остаток 1. 1 Искомное натуральное число имеет вид •k 2 сколько имеется таких натуральных чисел которые не превосходят 200. 3 запиши сумму заданых чисел. Sn=
ответ:Рамаяна – это древнеиндийский рассказ Вальмики о совместных приключениях божественной пары, где Вишну представлен в воплощении царя Рамы, а Лакшми — царской жены Ситы. Предлагаем прочитать короткое содержание «Рамаяны» — древнеиндийской героической поэмы.
В противоположность «Махабхарате», к которой прилагаются эпитеты итихаса (легенда, сага) и пурана (былина), Рамаяна относится к кавья, то есть к искусственным поэмам. Обыкновенно предполагается, что сюжет «Рамаяны» имеет характер аллегорический и изображает под видом подвигов Рамы распространение индоарийских племён на юг Индии до острова Шри-Ланка; но нет ничего невероятного в предположении, что в основу этой аллегорической легенды был положен какой-то древний миф.
Однако произведение n(n - 1) дает удвоенное число партий.
Ведь для любых двух участников турнира расчетом учтено, что первый играл со вторым, а затем, второй играл с первым, хотя на самом деле была одна партия.
ответ:Рамаяна – это древнеиндийский рассказ Вальмики о совместных приключениях божественной пары, где Вишну представлен в воплощении царя Рамы, а Лакшми — царской жены Ситы. Предлагаем прочитать короткое содержание «Рамаяны» — древнеиндийской героической поэмы.
В противоположность «Махабхарате», к которой прилагаются эпитеты итихаса (легенда, сага) и пурана (былина), Рамаяна относится к кавья, то есть к искусственным поэмам. Обыкновенно предполагается, что сюжет «Рамаяны» имеет характер аллегорический и изображает под видом подвигов Рамы распространение индоарийских племён на юг Индии до острова Шри-Ланка; но нет ничего невероятного в предположении, что в основу этой аллегорической легенды был положен какой-то древний миф.
Альбрехт ВеберОбозначим число участников буквой n,
тогда каждый сыграл n-1 партию
Получаем n(n-1) партий
Однако произведение n(n - 1) дает удвоенное число партий.
Ведь для любых двух участников турнира расчетом учтено, что первый играл со вторым, а затем, второй играл с первым, хотя на самом деле была одна партия.
Поэтому данное произведение делим на 2.
Получаем: n(n-1)/2 =45
n(n-1)=2*45
n^2-n=90
n^2-n-90=0
D=(-1)^2-4*1*(-90)=1+360=361=19^2
n^1=(1+19)/2=20/2=10
n^2=(1-19)/2=-18/2=-9∉N
Итак, число участников турнира равно 10
Объяснение: