Первый путём разложения на множители):
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-1)×(х-2)=0
х-1=0
х-2=0
х=1
х=2
х(под х пишем 1)=1
х(под х пишем 2)=2
Второй метод выделения полного квадрата):
х²-3х=-2
x^{2} - 3x + ( \frac{3}{2})^{2} = - 2 + ( \frac{3}{2})^{2}x
2
−3x+(
3
)
=−2+(
(x - \frac{3}{2})^{2} = \frac{1}{4}(x−
=
4
1
Третий по формуле для корней квадратного уравнения):
x = \frac{ - ( - 3) + - \sqrt{( - 3) ^{2} } - 4 \times 1 \times 2 }{2 \times 1}x=
2×1
−(−3)+−
(−3)
−4×1×2
x = \frac{3 + - \sqrt{9 - 8} }{2}x=
3+−
9−8
x = \frac{3 + - \sqrt{1} }{2}x=
x = \frac{3 + - 1}{2}x=
3+−1
x = \frac{3 + 1 }{2}x=
3+1
x = \frac{3 - 1}{2}x=
3−1
Где «+-» это означает «±»
В решении.
Объяснение:
Постройте на одной координатной плоскости графики функций:
1) у = 4х²; у = х²/4;
Графики - параболы с вершиной в начале координат (0; 0).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у = 4х²;
Таблица:
х -2 -1 0 1 2
у 16 4 0 4 16
у = х²/4;
х -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
у 9 6,25 4 2,25 1 0,25 0 0,25 1 2,25 4 6,25 9
2) у = -х²; у = х²/3;
у = -х²;
х -3 -2 -1 0 1 2 3
у -9 -4 -1 0 -1 -4 -9
у = х²/3;
х -6 -3 0 3 6
у 12 3 0 3 12
3) у = 2х²; у = 5х²;
у = 2х²;
у 18 8 2 0 2 8 18
у = 5х²;
у 20 5 0 5 20
Первый путём разложения на множители):
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-1)×(х-2)=0
х-1=0
х-2=0
х=1
х=2
х(под х пишем 1)=1
х(под х пишем 2)=2
Второй метод выделения полного квадрата):
х²-3х+2=0
х²-3х=-2
x^{2} - 3x + ( \frac{3}{2})^{2} = - 2 + ( \frac{3}{2})^{2}x
2
−3x+(
2
3
)
2
=−2+(
2
3
)
2
(x - \frac{3}{2})^{2} = \frac{1}{4}(x−
2
3
)
2
=
4
1
х=1
х=2
х(под х пишем 1)=1
х(под х пишем 2)=2
Третий по формуле для корней квадратного уравнения):
х²-3х+2=0
x = \frac{ - ( - 3) + - \sqrt{( - 3) ^{2} } - 4 \times 1 \times 2 }{2 \times 1}x=
2×1
−(−3)+−
(−3)
2
−4×1×2
x = \frac{3 + - \sqrt{9 - 8} }{2}x=
2
3+−
9−8
x = \frac{3 + - \sqrt{1} }{2}x=
2
3+−
1
x = \frac{3 + - 1}{2}x=
2
3+−1
x = \frac{3 + 1 }{2}x=
2
3+1
x = \frac{3 - 1}{2}x=
2
3−1
Где «+-» это означает «±»
х=2
х=1
х(под х пишем 1)=1
х(под х пишем 2)=2
В решении.
Объяснение:
Постройте на одной координатной плоскости графики функций:
1) у = 4х²; у = х²/4;
Графики - параболы с вершиной в начале координат (0; 0).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у = 4х²;
Таблица:
х -2 -1 0 1 2
у 16 4 0 4 16
у = х²/4;
Таблица:
х -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
у 9 6,25 4 2,25 1 0,25 0 0,25 1 2,25 4 6,25 9
2) у = -х²; у = х²/3;
Графики - параболы с вершиной в начале координат (0; 0).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у = -х²;
Таблица:
х -3 -2 -1 0 1 2 3
у -9 -4 -1 0 -1 -4 -9
у = х²/3;
Таблица:
х -6 -3 0 3 6
у 12 3 0 3 12
3) у = 2х²; у = 5х²;
Графики - параболы с вершиной в начале координат (0; 0).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у = 2х²;
Таблица:
х -3 -2 -1 0 1 2 3
у 18 8 2 0 2 8 18
у = 5х²;
Таблица:
х -2 -1 0 1 2
у 20 5 0 5 20