Очень важно с рисунком. Катеты прямоугольного треугольника равны 5 см и 6 см. Найти площадь проекции этого треугольника на плоскость, если плоскость треугольника наклонена к плоскости проекции под углом 60 градусов
Можно решить через логарифмы Количество знаков в числе N равно [lg(N)] + 1. Не менее 9 - это больше 8. Не более 11 - это меньше 12 lg(m^3) = 3*lg(m) > 8 lg(m^4) = 4*lg(m) < 12 Сокращаем lg(m) > 8/3 lg(m) < 3 Получаем. lg(m^12) = 3*4*lg(m) = 3*4*8/3 = 32 ответ: 32 знака
ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок
m^3 >= 100000000 = 10^8
m^4 < 100000000000 = 10^11
Извлекаем корни
m >= 10^(8/3) > 464
m < 10^(11/4) < 563
464^12 ~ 9,9*10^31 - 32 знака
500^12 = 5^12*100^12 = 244140625*10^24 - 32 знака
563^12 ~ 1,01*10^33 - 33 знака
ответ: 32 знака.
Можно решить через логарифмы
Количество знаков в числе N равно [lg(N)] + 1.
Не менее 9 - это больше 8. Не более 11 - это меньше 12
lg(m^3) = 3*lg(m) > 8
lg(m^4) = 4*lg(m) < 12
Сокращаем
lg(m) > 8/3
lg(m) < 3
Получаем.
lg(m^12) = 3*4*lg(m) = 3*4*8/3 = 32
ответ: 32 знака