Характеристика мечтателя "Белые ночи " . Настенька - главная героиня произведения, она занимает основное место, благодаря ей развиваются все события. Она милая, доброжелательная,скромная,спокойная, чувственная и ранимая девушка.В начале знакомства с Мечтателем она показала себя с лучшей стороны, но внешность обманчива, и Мечтатель увлекается ей, хотя девушка сразу сказала: "на дружбу я готова. . . а вот влюбится нельзя вас!". Основные события происходят в конце повести, Настенька, обиженная на того человека, которого любит, делает необдуманный шаг, решаясь строить с Мечтателем планы на будущее, но все рухнуло, так же внезапно, как и начиналось. Мечтатель снова один, Настенька ушла, предав героя. Получив на утро письмо, молодой человек долго размышлял, но у него не было чувства грусти, а даже наоборот. Девушка долго не замечала чувств героя, да и потом просто "воспользовалась" этим, но тот факт, что она искренне любила другого человека частично извиняет её. В своем последнем письме она просила не забывать о ней и любить её.
Настенька - главная героиня произведения, она занимает основное место, благодаря ей развиваются все события.
Она милая, доброжелательная,скромная,спокойная, чувственная и ранимая девушка.В начале знакомства с Мечтателем она показала себя с лучшей стороны, но внешность обманчива, и Мечтатель увлекается ей, хотя девушка сразу сказала: "на дружбу я готова. . . а вот влюбится нельзя вас!".
Основные события происходят в конце повести, Настенька, обиженная на того человека, которого любит, делает необдуманный шаг, решаясь строить с Мечтателем планы на будущее, но все рухнуло, так же внезапно, как и начиналось. Мечтатель снова один, Настенька ушла, предав героя. Получив на утро письмо, молодой человек долго размышлял, но у него не было чувства грусти, а даже наоборот.
Девушка долго не замечала чувств героя, да и потом просто "воспользовалась" этим, но тот факт, что она искренне любила другого человека частично извиняет её. В своем последнем письме она просила не забывать о ней и любить её.
Чтобы разложить квадратный трёхчлен на множители, надо найти его корни, приравняв нулю. Т.е. ищем корни уравнения 3x² - 11x + 6 = 0.
Корни можно искать как обычно через дискриминант. Они будут равны:
x1 = 3; x2 = 2/3
Разложение будет выглядеть следующим образом: (x - 3)*(x - 2/3).
НО! Надо ещё учесть коэффициент, который стоит перед x², у нас он равен 3. Так вот, полученное разложение надо умножить на этот коэффициент!
Окончательно разложение будет выглядеть так:
3*(x - 3)*(x - 2/3) = (x - 3)*(3x - 2)
Общее правило для уравнений вида
a x² + b x + c
которые имеют корни x1 и x2, можно разложить по формуле
a * (x - x1) * (x - x2)
Что мы и сделали.
Проверяем
(x - 3)*(3x - 2) = 3x² - 2x - 9x + 6 = 3x² - 11x + 6
Объяснение:
Надеюсь понятно?