Войти
Поиск по вопросам, ответам и авторам
Монету бросают 8 раз. Во сколько раз событие "орел выпадет ровно 6 раз" более вероятно, чем событие "орёл выпадет ровно один раз"?
·
24 сент 2018
64,3 K
Анастасия BonneFee
Препод-IT-шник.
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 8; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
а) Орел выпадает ровно 6 раз (k = 6)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(6! * 2!) * (1/2)^6 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
б) Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.
x1=πn,n∈z
3π<πn<4π
3<n<4
нет решения
6cos²x-11cosx+4=0
cosx=a
6a²-11a+4=0
D=121-96=25
a1=(11-5)/12=1/2⇒cosx=1/2⇒x=11π/6+2πk,k∈z
3π<11π/6+2πk<4π
18<11+12k<24
7<12k<13
7/12<k<13/12
k=1⇒x=11π/6+2π=23π/6
a2=(11+5)/12=4/3⇒cosx=4/3>1 нетрешения
2)2сos²x+10sin2xcos2x+4sin²x+4cos²x=0/cos²x
4tg²x+10tgx+6=0
tgx=a
2a²+5a+3=0
D=25-24=1
a1=(-5-1)/4=-1,5⇒tgx=-1,5⇒x=-arctg1,5+πn
x=2π-arctg1,5
a2=(-5+1)/4=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
x=3π/4
3)3cos²x+5sinxcosx+2cos²x=0
5cosx*(cosx+sinx)=0
cosx=0⇒x=π/2+πn,n∈z
x=5π/2
cosx+sinx=0/cosx
tgx+1=0
tgx=-1⇒x=-π/4+πm,m∈z
x=7π/4
Войти
Поиск по вопросам, ответам и авторам
Монету бросают 8 раз. Во сколько раз событие "орел выпадет ровно 6 раз" более вероятно, чем событие "орёл выпадет ровно один раз"?
·
24 сент 2018
·
64,3 K
Анастасия BonneFee
Препод-IT-шник.
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 8; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
а) Орел выпадает ровно 6 раз (k = 6)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(6! * 2!) * (1/2)^6 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
б) Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.