коэффициенты пульсации напряжения и тока связаны между собой в виде
к
л
(8-28)
характер зависимости коэффициентов пульсации друг от друга при разных коэффициентах использования напряжения питания показан на графиках (рис 8-5, б). из этого графика следует, что малые значения коэффициентов пульсации возможны при низком использовании питающего напряжения.
процессы в накопителе при его разряде на нагрузку с импульсом прямоугольной формы описываются исходным уравнением
dl du
е
и
hrz или r
(8-29)
полагая
и
с с
и
и(; --с);
de di
,1 i
после к виду
несложных преобразований исходное уравнение можно
r \
rrh 1 crrii
h7
или
crrn
(8-30)
где обозначено
решение уравнения (3) имеет вид:
i p-at
3. мйн*
r3 +
.-ah.
); 1
з.мин
(1 - n).
зарядный ток г'з оказывается минимальным в момент времени / = о, когда еще только начинается разряд конденсатора, т. е. до начала протекания импульса тока по нагрузке.
при подстановке значения тока и представлении его в относительном масштабе, получим:
(8.31)
а при < 1
л
подставляя значение тока i% в .mi уравнение (и^ -
е - isra) и выражая напряжение в относительном масштабе, можно найти
uq к
1 - (1 - п) е- = j-- (1 -
или при к > > 1
и^ е
(8-32)
во время /== tji-т- г , т. е. в промей< : утках между импульсами тока в нагрузке, конденсатор будет заряжаться и ток заряда будет уменьшаться с ростом напряжения uq на конденсаторе. в эти моменты времени ток через зарядное сопротивление описывается уравнением
ь - сиакс^ - смакс^
где 1 - вpeш, изменяющееся в пределах от до г^. учитывая, что / = ; к ;
смакс =r-j~ = пи -j- . получим
/пи
в 5ти же отрезки времени напряжение иа конденсаторе будет
x-x0)^2+(y-y0)^2=r^2 - общий вид. Подаставляем координаты трех точек:
(1-x0)^2+(2-y0)^2=r^2
x0^2+(1+y0)^2=r^2 (***)
(3+x0)^2+y0^2=r^2
приравняем левые части второго и третьего уравнений:
x0^2+(1+y0)^2=(3+x0)^2+y0^2
xo^2+1+2y0+y0^2=9+6x0+x0^2+y0^2
y0-3x0=4 (*)
теперь приравниваем первое и второе:
(1-х0)^2+(2-y0)^2=x0^2=(1+y0)^2
1-2x0+x0^2+4-4y0+y0^2=x0^2+1+2y0+y0^2
x0=2-3y0 (**)
из уравнений (*) и (**) составляем систему и решаем ее:
у0-6+9у0=4
у0=1
х0= -1
находим радиус, подставив в (***):
(-1)^2+(1+1)^2=r^2; r^2=5. Тогда уравнение окружности:
(х+1)^2+(у-1)^2=5
3. мин
е
т
з.м1ш
л
1 + kni
коэффициенты пульсации напряжения и тока связаны между собой в виде
к
л
(8-28)
характер зависимости коэффициентов пульсации друг от друга при разных коэффициентах использования напряжения питания показан на графиках (рис 8-5, б). из этого графика следует, что малые значения коэффициентов пульсации возможны при низком использовании питающего напряжения.
процессы в накопителе при его разряде на нагрузку с импульсом прямоугольной формы описываются исходным уравнением
dl du
е
и
hrz или r
(8-29)
полагая
и
с с
и
и(; --с);
de di
,1 i
после к виду
несложных преобразований исходное уравнение можно
r \
rrh 1 crrii
h7
или
crrn
(8-30)
где обозначено
решение уравнения (3) имеет вид:
i p-at
3. мйн*
r3 +
.-ah.
); 1
з.мин
(1 - n).
зарядный ток г'з оказывается минимальным в момент времени / = о, когда еще только начинается разряд конденсатора, т. е. до начала протекания импульса тока по нагрузке.
при подстановке значения тока и представлении его в относительном масштабе, получим:
(8.31)
а при < 1
л
подставляя значение тока i% в .mi уравнение (и^ -
е - isra) и выражая напряжение в относительном масштабе, можно найти
uq к
1 - (1 - п) е- = j-- (1 -
или при к > > 1
и^ е
(8-32)
во время /== tji-т- г , т. е. в промей< : утках между импульсами тока в нагрузке, конденсатор будет заряжаться и ток заряда будет уменьшаться с ростом напряжения uq на конденсаторе. в эти моменты времени ток через зарядное сопротивление описывается уравнением
ь - сиакс^ - смакс^
где 1 - вpeш, изменяющееся в пределах от до г^. учитывая, что / = ; к ;
смакс =r-j~ = пи -j- . получим
/пи
в 5ти же отрезки времени напряжение иа конденсаторе будет
с = - /з^з = 11 - (1 - пг) е- ].
или
-=1 (1 т)е- . (8-34)