Объединитесь в пары. Решите системы методом подстановки или методом сложения.
Вводите ответы в круглых скобках, через точку с запятой, не используя каких-либо дополнительных знаков и пробелов. Например: (–7;15).
2(x+y)-3(x-y)=4
5(x+y)-7(x-y)=2
2(x+y)−3(x−y)=4
5(x+y)−7(x−y)=2
5(3x+y)-8(x-6y)=200
20(2x-3y)-13(x-y)=520
5(3x+y)−8(x−6y)=200
20(2x−3y)−13(x−y)=520
Объяснение:
4 часа 30 мин=270мин
6 часов 45 мин=405мин
1/270 часть бассейна нальет первый кран за 1 мин
1/405 часть бассейна нальет второй кран за 1 мин
1/405+1/270=5/810=1/162 часть бассейна нальют 2 крана за 1 мин
1:(1/162)=162 мин - время за которое 2 крана наполнят весь бассейн
первый кран был открыт 162 мин
162/270=3/5 - бассейна наполнит первый кран за 162 мин1-3/5=2/5 бассейна нужно наполнить второму крану
2/5 : 1/405=2*405/5*1=810/5=162 мин - Через столько времени бассейн наполнится.
ответ:162 мин. 1-3/5=2/5 бассейна нужно наполнить второму крану
2/5 : 1/405=2*405/5*1=810/5=162 мин - Через столько времени бассейн наполнится.
ответ:162 мин.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше