Перепишем уравнение параболы в виде y=x²/8-1/4=1/8*(x²-2). Так как при любых значениях x x²≥0, то x²-2≥-2. Отсюда следует, что вершина параболы имеет ординату x=0, тогда y=-0,25. Значит, вершины координаты таковы: (0, -0,25). Для нахождения фокуса запишем уравнение параболы в виде x²=2*p*(y-y0). В нашем случае это уравнение имеет вид x²=2*4*(y-(-0,25)), так что p=4 и y0=-0,25. Фокус параболы имеет координаты (0,p/2), в нашем случае это (0,2). Директриса в нашем случае задаётся уравнением y+p/2=0, или y=-2.
Пусть событие A -- среди 5 вытянутых билетов из 90 имеется по крайней мере 2 последовательных числа. Согласно классическому определению вероятности, вероятность события A равна: , где m - количество благоприятных исходов, n - количество неблагоприятных исходов. Всего вариантов выбрать 5 билетов из 90: Благоприятных исходов (выбрать хотя бы 2 последовательно идущих числа из 90) всего будет 89, то есть (1, 2, ...), (2, 3, ...), (3, 4, ...), ..., (89, 90, ...). То есть все пятерки чисел, которые включают в себя пары, начинающиеся с 1, и заканчивающиеся 89, - всего их 89. Таким образом, вероятность равна
Для нахождения фокуса запишем уравнение параболы в виде x²=2*p*(y-y0). В нашем случае это уравнение имеет вид x²=2*4*(y-(-0,25)), так что p=4 и y0=-0,25. Фокус параболы имеет координаты (0,p/2), в нашем случае это (0,2). Директриса в нашем случае задаётся уравнением y+p/2=0, или y=-2.
Согласно классическому определению вероятности, вероятность события A равна: , где m - количество благоприятных исходов, n - количество неблагоприятных исходов.
Всего вариантов выбрать 5 билетов из 90:
Благоприятных исходов (выбрать хотя бы 2 последовательно идущих числа из 90) всего будет 89, то есть (1, 2, ...), (2, 3, ...), (3, 4, ...), ..., (89, 90, ...). То есть все пятерки чисел, которые включают в себя пары, начинающиеся с 1, и заканчивающиеся 89, - всего их 89.
Таким образом, вероятность равна