ОДЗ: 5-x>0⇒x<5; 35-x^3>0⇒x^3<35 lg(5-x)-1/3*lg(35-x^3)=0⇒lg(5-x)-lg(35-x^3)^(1/3)=0⇒ lg((5-x):(35-x^3)^(1/3))=0⇒((5-x):(35-x^3)^(1/3))=10^0⇒ ((5-x)/(35-x^3)^(1/3))=1⇒5-x=(35-x^3)^(1/3)⇒возводим обе части в куб⇒ (5-x)^3=35-x^3⇒5^3-3*5^2*x+3*5*x^2-x^3=35-x^3⇒15x^2-75x+125-35=0⇒ 15x^2-75x+90=0⇒x^2-5x+6=0 По теореме Виетта x1+x2=5; x1*x2=6⇒x1=3;x2=2 Оба корня являются решениями 3<5 и 3^3=27<35 2<5 и 2^3=8<35 Используемые формулы: algb=lg(b^a); lg(a/b)=lga-lgb; lga=b⇒a=10^b Все формулы справедливы как слева направо, так и справа налево
π/6+πn≤π/4-x<π/2+πn
π/6-π/4+πn≤-x<π/2-π/4+πn
-π/24+πn≤-x<π/4+πn
-π/4+πn<x≤π/24+πn
x∈(-π/4+πn;π/24+πn]
2)2πn≤x≤π+2πn
3π/4+2πn≤x≤5π/4+2πn
x∈[3π/4+2πn;π+2πn}
3)cosxcosy=1/4⇒cos(x-y)+cos(x+y)=1/2
ctgxctgy--3/4⇒1/4:sinxsiny=-3/4⇒sinxsiny=-1/3⇒cos(x-y)-cos(x+y)=-2/3
прибавим и отнимем
2сos(x-y)=-1/6⇒cos(x-y)=-1/12⇒x-y=π-argcos1/12
2cos(x+y)=7/6⇒cos(x+y)=7/12⇒x+y=arccos7/12
прибавим и отнимем
2x=π-arccos1/12+arccos7/12⇒x=π/2-1/2arccos1/12+1/2arccos7/16
2y=π-arccos1/12-arccos7/12⇒x=π/2-1/2arccos1/12-1/2arccos7/16
4)2sin2xsin4x=0
sin2x=0⇒2x=πn⇒x=πn/2
sin4x=0⇒4x=πn⇒x=πn/4
ответ x=πn/4
35-x^3>0⇒x^3<35
lg(5-x)-1/3*lg(35-x^3)=0⇒lg(5-x)-lg(35-x^3)^(1/3)=0⇒
lg((5-x):(35-x^3)^(1/3))=0⇒((5-x):(35-x^3)^(1/3))=10^0⇒
((5-x)/(35-x^3)^(1/3))=1⇒5-x=(35-x^3)^(1/3)⇒возводим обе части в куб⇒
(5-x)^3=35-x^3⇒5^3-3*5^2*x+3*5*x^2-x^3=35-x^3⇒15x^2-75x+125-35=0⇒
15x^2-75x+90=0⇒x^2-5x+6=0
По теореме Виетта x1+x2=5; x1*x2=6⇒x1=3;x2=2
Оба корня являются решениями
3<5 и 3^3=27<35
2<5 и 2^3=8<35
Используемые формулы:
algb=lg(b^a); lg(a/b)=lga-lgb; lga=b⇒a=10^b
Все формулы справедливы как слева направо, так и справа налево