1) точки пересечения x^3=x x^3-x=0 x(x^2-1)=0 x=0 x^2=1 x=-1 x=1 так как эти точки принадлежат прямой у=х то в них у=х то есть (-1,1) (0,0) (1,1) 2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1 если х будет > х^3 значит прямая будет выше 2.1) x<-1 возьмем х из этого интервала например х=-2 x^3=-8 x>x^3 значит на этом интервале прямая выше 2.2) -1<x<0 например х=-0,5 x^3=-0,125 x<x^3 прямая ниже 2.3) 0<x<1 например х=0,5 x^3=0,125 x>x^3 прямая выше 2.4) x>1 например х=2 x^3=8 x<x^3 прямая выше таким образом прямая выше при x<-1 и при 0<x<1
Объяснение:
Так как это прямые, то они имеют максимум одну точку пересечения, либо не имеет ни одной, если они параллельны.
а) y1 = 17x - 3; y2 = -2x
y1 = y2 - это условие пересечения
17x - 3 = -2x ⇒ 19x = 3 ⇒ x = 3/19
y(3/19) = 17*3/19 - 3 = -2 * 3/19 = -6/19.
ответ: (3/19; -6/19)
б) y1 = x/3; y2 = 2 - 11x
y1 = y2
x/3 = 2 - 11x | * 3 ⇒ x = 6 - 33x ⇒ 34x = 6 ⇒ x = 6/34 = 3/17
y(3/17) = (3/17) / 3 = 2 - 11*3/17 = 1/17.
ответ: (3/17; 1/17)
в) y1 = 2/3x - 3; y2 = 2.5y1 = y22/3x - 3 = 2.5 ⇒ 2/3x = 5.5 | * 3/2 ⇒ x = 8.25
y(8.25) = 2*8.25/3 - 3 = 2.5
ответ: (8.25; 2.5)
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1