Область значения функции - это множество, которое может принимать y
1) y = x² - 3x.
График - парабола. Так как ветви вверх, то минимальное значение находится в вершине.
y = -D/4a, где D = b² - 4ac
D = 9 - 4 * 1 * 0 = 9 - 0 = 9
y(min) = -9/4 = -2.25
Значит, множество значений y: [-2.25; +∞)
б) y = √x
Так как корень из числа - число неотрицательное, то множество значений такой функции равно y: [0; +∞)
в) y = 2/x
График - гипербола, ветви которых расположены в I и III четвертях. Данная функция имеет точку разрыва второго рода в точке x = 0, где стремится к -∞ слева, а к +∞ справа. Таким образом, множество значений этой функции y = (-∞; 0) ∪ (0;+∞)
г) y = √(x²) = |x|.
Модуль - функция неотрицательная, таким образом, ее область значений такая же, как и в пункте б)
y ⊂ [0; +∞)
д) y = 1/(2x-3)
Точно такая же гипербола, как и в пункте в)
Объяснение такое же:
y ⊂ (-∞; 0) ∪ (0; +∞)
е) y = 2x^4 + 3x² + 1
Выполним замену x² = t, получим:
y(t) = 2t² + 3t + 1.
Снова парабола, ветви вверх, значит, минимальное значение в вершине. Подробнее я расписал пункт а)
Объяснение:
Область значения функции - это множество, которое может принимать y
1) y = x² - 3x.
График - парабола. Так как ветви вверх, то минимальное значение находится в вершине.
y = -D/4a, где D = b² - 4ac
D = 9 - 4 * 1 * 0 = 9 - 0 = 9
y(min) = -9/4 = -2.25
Значит, множество значений y: [-2.25; +∞)
б) y = √x
Так как корень из числа - число неотрицательное, то множество значений такой функции равно y: [0; +∞)
в) y = 2/x
График - гипербола, ветви которых расположены в I и III четвертях. Данная функция имеет точку разрыва второго рода в точке x = 0, где стремится к -∞ слева, а к +∞ справа. Таким образом, множество значений этой функции y = (-∞; 0) ∪ (0;+∞)
г) y = √(x²) = |x|.
Модуль - функция неотрицательная, таким образом, ее область значений такая же, как и в пункте б)
y ⊂ [0; +∞)
д) y = 1/(2x-3)
Точно такая же гипербола, как и в пункте в)
Объяснение такое же:
y ⊂ (-∞; 0) ∪ (0; +∞)
е) y = 2x^4 + 3x² + 1
Выполним замену x² = t, получим:
y(t) = 2t² + 3t + 1.
Снова парабола, ветви вверх, значит, минимальное значение в вершине. Подробнее я расписал пункт а)
y = -D/4a; D = b² - 4ac = 1
y = -1/4 = -0.25
y ⊂ [-0.25; +∞)
Коэффициент подобия по определению считается по линейным размерам .
Для периметра (сумме линейных размеров) он равен k, для площадей k^2,
для объемов k^3.Тогда периметр равен 12*4=48 см, площадь равна 9*4^2=144 кв. см
Как-то так
Объяснение:
<!--c-->
Отношение периметров двух подобных треугольников равно коэффициенту подобия.
P(ABC)P(RTG)=k20P(RTG)=19P(RTG)=9⋅20=180(см)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
S(ABC)S(RTG)=k26S(RTG)=(19)26S(RTG)=181S(RTG)=6⋅81=486(см2)