Нужно решить примеры с дробями как можно скорее.
нужно.
первое в закрепе
2 : 1)2x-2y/y*3y^2/x^2-y^2 2)y+x/y: xy+x^2/y^2 3) (x^2-xy): x^2-y^2/2y
4)x^2-y^2/x^2-2xy+y^2: (x+y) 5)4y/y^2-x^2-2/y-x
3 в закрепе.
не особо получается решить, что-то получилось что-то нет, буду )
2. На фото))
3. Пусть одна сторона треугольника = х, тогда вторая - х+7
Площадь треугольника ищем по формуле: S=первая сторона*вторую сторону, можем записать уравнение:
х*(х+7)=44
х^2+7х=44
х^2+7х-44=0
Получаем квадратное уравнение, решив которое получим 2 корня: х1=-11(не подходит, так как длина стороны не может быть отрицательным числом), х2=4
Значит, первая сторона равна - 4 см, а вторая-4+7=11 (см).
4. По теореме Виета:
-6+х2=-b/2
-6*x2=-6/2
Находим х2 с второго выражения
-6*x2=-6/2
-6*x2=-3
х2=1/2
Теперь ищем b с первого выражения
-6+1/2=-b/2
-11/2=-b/2
-11=-b
b=11
5. Уравнение имеет 1-н корень если дискриминант = 0.
D=16-4*2*a=0. 16-8a=0. 8a=16. a=2
-90
Объяснение:
Согласно условию задачи, дана арифметическая прогрессия аn, в которой а1 = -7.2, а2 = -6.9. Используя определение арифметической прогрессии, находим разность d данной прогрессии: d = а2 - а1 = -6.9 - (-7.2) = -6.9 + 7.2 = 0.3. Используя формулу n-го члена арифметической прогрессии аn = a1 + (n - 1) * d, найдем последний отрицательный член данной прогрессии. Для этого решим в целых числах неравенство: -7.2 + (n - 1) * 0.3 < 0; -7.2 + 0.3 * n - 0.3 < 0; -7.5 + 0.3 * n < 0; 0.3 * n < 7.5; n < 7.5 / 0.3; n < 25. Следовательно, 24-й член а24 является последним отрицательным членом данной прогрессии. Используя формулу суммы первых n членов арифметической прогрессии Sn = (2 * a1 + d * (n - 1)) * n / 2 при n = 24, найдем сумму первых 24 членов данной арифметической прогрессии: S24 = (2 * ( -7.2) + 0.3 * (24 - 1)) * 24 / 2 = (-14.4 + 6.9) * 12 = -7.5 * 12 = -90. ответ: сумма всех отрицательных членов данной арифметической прогрессии равна -90.