Нужно построить закон распределения дискретной случайной величины в виде таблицы.
Задача звучит так: два баскетболиста независимо друг от друга делают по одному броску в одну корзину. Вероятность попадания при одном броске равна 0,6 и 0,9 соответственно. Х - число попаданий в корзину.
Скорость второго рабочего v₂ деталей в минуту
Пусть в партии S деталей.
Тогда
(S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии.
S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию.
Если х - искомое количество деталей, то
(S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии.
Отсюда x=S(1-v₂/(2v₁)).
Из 1-го и 2-го уравнений получим
v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е.
S^2=2(S-8)(S-15).
Решаем это квадратное уравнение, получаем корни 6 и 40.
6 не подходит, т.к. количество деталей больше 6.
Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24.
ответ: 24 детали.
log0.1(x^2-3x)=-1 log0.1(x^2-3x)=log0.1(0,1)^-1 x^2-3x=0.1^-1=10 x^2-3x-10=0
D=9+40=49 vD=+-3 x1=3-3/2=0 x2=3+3/2=3 одз x^2-3x>0 x(x-3)>0 x>0 x>3
получили х1=0 х2=3 не уд одз ответ корней нет
2log5(-x)=log5(x+2) (-x)^2=x+2 x^2-x-2=0 D=1+8=9 vD=+-3 x1=1-3/2=-1 x2=-1+3/2=1 одз -х>0 x<0 x+2>0 x>-2 -2<x<0 =>x1=-1корень х2 не уд одз
log0.2(3x-1)>=log0.2(3-x) одз 3х-1>0 3x>1 x>1/3 3-x>0 3>x => 1/3<x<3
3x-1<=3-x 4x<=4 x<=1