x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
В решении.
Объяснение:
2) (1-2у)(1-3у) = (6у-1)у-1
Раскрыть скобки:
1-3у-2у+6у² = 6у²-у-1
Привести подобные члены:
6у²-6у²-5у+у= -1-1
-4у= -2
у= -2/-4
у=0,5
Проверка путём подстановки вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.
3) 7+2х² = 2(х+1)(х+3)
7+2х² = 2(х²+3х+х+3)
7+2х² = 2(х²+4х+3)
7+2х² = 2х²+8х+6
2х²-2х²-8х = 6-7
-8х= -1
х= -1/-8
х= 1/8.
Проверка путём подстановки вычисленного значения х в уравнение показала, что данное решение удовлетворяет данному уравнению.
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.В решении.
Объяснение:
2) (1-2у)(1-3у) = (6у-1)у-1
Раскрыть скобки:
1-3у-2у+6у² = 6у²-у-1
Привести подобные члены:
6у²-6у²-5у+у= -1-1
-4у= -2
у= -2/-4
у=0,5
Проверка путём подстановки вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.
3) 7+2х² = 2(х+1)(х+3)
Раскрыть скобки:
7+2х² = 2(х²+3х+х+3)
7+2х² = 2(х²+4х+3)
7+2х² = 2х²+8х+6
Привести подобные члены:
2х²-2х²-8х = 6-7
-8х= -1
х= -1/-8
х= 1/8.
Проверка путём подстановки вычисленного значения х в уравнение показала, что данное решение удовлетворяет данному уравнению.