-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
1)y= x² - 4x - 5
Уравнение параболы cо смещённым центром, ветви параболы направлены вверх.
а)Найти координаты вершины параболы:
х₀ = -b/2a = 4/2 = 2
y₀ = 2²-4*2 -5 = 4 - 8 -5 = -9
Координаты вершины (2; -9)
c)Ось симметрии = -b/2a X = 4/2 = 2
d)Найти точки пересечения параболы с осью Х, нули функции:
y= x² - 4x - 5
x² - 4x - 5 = 0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16+20)/2
х₁,₂ = (4±√36)/2
х₁,₂ = (4±6)/2
х₁ = -1
х₂ = 5
Координаты нулей функции (-1; 0) (5; 0)
d)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: y = -0+0-5= -5
Также такой точкой является свободный член уравнения c = -5
Координата точки пересечения (0; -5)
e)Для построения графика нужно найти ещё несколько
дополнительных точек:
х= -2 у= 7 ( -2; 7)
х= 0 у= -5 (0; -5)
х= 1 у= -8 (1; -8)
х= 3 у= -8 (3; -8)
х= 4 у= -5 (4; -5)
х= 6 у= 7 (6; 7)
Координаты вершины параболы (2; -9)
Координаты точек пересечения параболы с осью Х: (-1; 0) (5; 0)
Координаты дополнительных точек: (-2; 7) (0; -5) (1; -8) (3; -8) (4; -5) (6; 7)
По найденным точкам строим график параболы.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
1)y= x² - 4x - 5
Уравнение параболы cо смещённым центром, ветви параболы направлены вверх.
а)Найти координаты вершины параболы:
х₀ = -b/2a = 4/2 = 2
y₀ = 2²-4*2 -5 = 4 - 8 -5 = -9
Координаты вершины (2; -9)
c)Ось симметрии = -b/2a X = 4/2 = 2
d)Найти точки пересечения параболы с осью Х, нули функции:
y= x² - 4x - 5
x² - 4x - 5 = 0, квадратное уравнение, ищем корни:
х₁,₂ = (4±√16+20)/2
х₁,₂ = (4±√36)/2
х₁,₂ = (4±6)/2
х₁ = -1
х₂ = 5
Координаты нулей функции (-1; 0) (5; 0)
d)Найти точки пересечения графика функции с осью ОУ.
Нужно придать х значение 0: y = -0+0-5= -5
Также такой точкой является свободный член уравнения c = -5
Координата точки пересечения (0; -5)
e)Для построения графика нужно найти ещё несколько
дополнительных точек:
х= -2 у= 7 ( -2; 7)
х= 0 у= -5 (0; -5)
х= 1 у= -8 (1; -8)
х= 3 у= -8 (3; -8)
х= 4 у= -5 (4; -5)
х= 6 у= 7 (6; 7)
Координаты вершины параболы (2; -9)
Координаты точек пересечения параболы с осью Х: (-1; 0) (5; 0)
Координаты дополнительных точек: (-2; 7) (0; -5) (1; -8) (3; -8) (4; -5) (6; 7)
По найденным точкам строим график параболы.