1) и 3)
Объяснение:
Для замены неравенства (x − 14) ⋅ (x + 12) ≤ 0
следует выбрать ту систему, которая обеспечивает отрицательный знак произведения, то есть
1) {x−14≥0
{x+12≤0
и
3) {x−14≤0
{x+12≥0
Дополнительно, решим неравенство
Рассматривая систему неравенств 1), видим, что она сводится к системе
{х ≥ 14
{х ≤ -12
Очевидно, что данная система решений не имеет
Рассматривая систему неравенств 3), видим, что она сводится к системе
{х ≤ 14
{х ≥ -12
Очевидно, что данная система имеет решение х ∈ [-12; 14]
1) и 3)
Объяснение:
Для замены неравенства (x − 14) ⋅ (x + 12) ≤ 0
следует выбрать ту систему, которая обеспечивает отрицательный знак произведения, то есть
1) {x−14≥0
{x+12≤0
и
3) {x−14≤0
{x+12≥0
Дополнительно, решим неравенство
Рассматривая систему неравенств 1), видим, что она сводится к системе
{х ≥ 14
{х ≤ -12
Очевидно, что данная система решений не имеет
Рассматривая систему неравенств 3), видим, что она сводится к системе
{х ≤ 14
{х ≥ -12
Очевидно, что данная система имеет решение х ∈ [-12; 14]