1) cosx≥0 - так как под корнем четной степени. sinx≥0, так как иначе Значит, решения могут быть только в I квадранте (включая границы). 2) Очевидно, что x1=2πn и x2=π/2+2πn являются решениями данного уравнения. В первом случае sinx=0, cosx=1, во втором sinx=1, cosx=0. 3) Покажем, что других корней быть не может. Найдем производную функции
Так как x - в первом квадранте, то sinx постоянно возрастает, cosx постоянно убывает, значит "первая часть" в производной
постоянно убывает от +∞ (справа при стремлении к 0) до 0 (в π/2), а "вторая часть"
постоянно возрастает от 0 (в 0) до +∞ при стремлении к π/2. Это значит, что производная положительна до некого x_max на [0;x_max) и отрицательна на (x_max;π/2], принимая одно нулевое значение в x_max на отрезке [0;π/2] Так как на концах отрезка [0;π/2] рассматриваемая функция принимает значения, равные 1, во всех остальных точках отрезка [0;π/2] она принимает значения строго больше 1. Следовательно, других корней исходного уравнения нет.
sinx≥0, так как иначе
Значит, решения могут быть только в I квадранте (включая границы).
2) Очевидно, что x1=2πn и x2=π/2+2πn являются решениями данного уравнения. В первом случае sinx=0, cosx=1, во втором sinx=1, cosx=0.
3) Покажем, что других корней быть не может.
Найдем производную функции
Так как x - в первом квадранте, то sinx постоянно возрастает, cosx постоянно убывает, значит "первая часть" в производной
постоянно убывает от +∞ (справа при стремлении к 0) до 0 (в π/2),
а "вторая часть"
постоянно возрастает от 0 (в 0) до +∞ при стремлении к π/2.
Это значит, что производная положительна до некого x_max на [0;x_max)
и отрицательна на (x_max;π/2], принимая одно нулевое значение в x_max на отрезке [0;π/2]
Так как на концах отрезка [0;π/2] рассматриваемая функция принимает значения, равные 1, во всех остальных точках отрезка [0;π/2] она принимает значения строго больше 1.
Следовательно, других корней исходного уравнения нет.
Объяснение:
1.
20x³y²+4x²y=4x²y(5xy+4)
Вынесение общего множителя за скобки
2.
b+(a+5)-c(a+5)=(a+5)(b-c)
Вынесение общего множителя за скобки
3.
a^4-b^8= a^4-(b²)^4 =(a²)²-(b^4)² = (a²-b^4)(a²+b^4)=(a-b²)(a+b²)(a²+b^4)
Формула сокращенного умножения
4.
2bx-3ay-6by+ax= 2bx+ax -3ay-6by= x(2b+a)-3y(a+2b) = x(a+2b)(x-3y)
группировки
5.
a²+ab-5a-5b= a²-5a+ab-5b= a(a-5)+b(a-5) = (a-5)(a+b)
группировки
6.
27b³+a^6= (3b)³ + (a²)³=(3b+a²)(3b²-3ba²+a^4)
Формула сокращенного умножения