Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Основные свойства функций.
1) Область определения функции:
x≠0
D(f)=(-∞;0)∪(0; +∞)
Область значений функции:
y≠1E(f)=(-∞;1)∪(1; +∞)
2) Нули функции.
x≠0y=02/x+1=02/x=-1x=-2
3) Промежутки знакопостоянства функции.y>0
2/x+1>0(2+x)/x>0 + - +__________-2_____________0_____________
y>0 x∈(-∞; -2)∪(0; +∞)
y<0 x∈(-2; 0)4) Монотонность функции.
-2/х²=0
х≠0
Значит точек перегиба нет.
Функция убывает как на промежутке (-∞;0), так и на промежутке (0;+∞).
5) Четность (нечетность) функции.
f(-x) =2/(-х)+1=-2/х+1
-f(x)=-2/x-1f(x)≠-f(x)=f(-x)⇒ значит функция не является ни четной ни не четной
6) Ограниченная и неограниченная функции.
Функция не ограничена ни снизу, ни сверху.
7) У функции нет ни наибольшего, ни наименьшего значений.8) Функция непрерывна на промежутке (-∞;0) и на промежутке (0;+∞). Имеет разрыв в точке х=0.
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.