1-2sina=2(1/2-sina)=2(sin30· -·sina)=4sin(15·-a/2)cos(15·+a/2) 1+sina=1+cos(90 ·-a)=2cos^2(45·-·a/2) или по другому 1+sina=sin90· +sina=2sin(45·+a/2)cos(45·-a/2)=2cos(90·-(45·+a/2))cos(45·-a/2)= =2cos(45·-a/2)*cos(45·-a/2)=2cos^2(45·-·a/2) Доказать тождество: cosa +cos (2п/3 +a) + cos( 2п/3 - a) = 0 cosa +cos (2п/3 +a) + cos( 2п/3 - a) =cosa +2cos((2п/3 +a) + ( 2п/3 - a))/2* *cos((2п/3 +a) -( 2п/3 - a))/2=cosa +2cos2п/3*cosa= =cosa +2cos(п-п/3)*cosa=cosa -2cosп/3*cosa=cosa -2*1/2*cosa=cosa -cosa=0
Подробнее – на Otvet.Ws – https://otvet.ws/questions/6315791-pomogite-reshit-algebru-zaranee-blagodaryu-zapisat-v-vide.html
Объяснение:
наверное это
y = 7x - 6sinx +12
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8
1-2sina=2(1/2-sina)=2(sin30· -·sina)=4sin(15·-a/2)cos(15·+a/2) 1+sina=1+cos(90 ·-a)=2cos^2(45·-·a/2) или по другому 1+sina=sin90· +sina=2sin(45·+a/2)cos(45·-a/2)=2cos(90·-(45·+a/2))cos(45·-a/2)= =2cos(45·-a/2)*cos(45·-a/2)=2cos^2(45·-·a/2) Доказать тождество: cosa +cos (2п/3 +a) + cos( 2п/3 - a) = 0 cosa +cos (2п/3 +a) + cos( 2п/3 - a) =cosa +2cos((2п/3 +a) + ( 2п/3 - a))/2* *cos((2п/3 +a) -( 2п/3 - a))/2=cosa +2cos2п/3*cosa= =cosa +2cos(п-п/3)*cosa=cosa -2cosп/3*cosa=cosa -2*1/2*cosa=cosa -cosa=0
Подробнее – на Otvet.Ws – https://otvet.ws/questions/6315791-pomogite-reshit-algebru-zaranee-blagodaryu-zapisat-v-vide.html
Объяснение:
наверное это
y = 7x - 6sinx +12
y' = 7 - 6cosx
7 - 6cosx = 0
6cosx = 7
cosx = 7/6, 7/6 больше 1, поэтому корней нет
Раз критических точек нет, то подставляем только границы промежутка:
y(-π/2) = 7*(-π/2) - 6sin(-π/2) + 8 = -7π/2 + 6 + 8 = -7π/2 + 14 = (28-7π)/2
y(0) = 7*0 + sin0 + 8 = 8
Сравним 8 и (28-7π)/2, чтобы определить наибольшее значение:
8 - (28-7π)/2 = (16 - 28 + 7π)/2 = (7π - 12)/2 ≈ (21 - 12)/2 = 9/2 > 0
8 - (28-7π)/2 > 0
8 > (28-7π)/2
ответ: наибольшее значение функции y = 7x - 6sinx + 8 на отрезке [-π/2; 0] равно 8