В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Отличник1029
Отличник1029
13.11.2020 11:51 •  Алгебра

Найти наименьший корень уравнения (sqrt{x+5} - sqrt{x+4})^x²=(sqrt{x+5} + sqrt{x+4})^5x-6

Показать ответ
Ответ:
Златаник2017
Златаник2017
03.10.2020 18:53
X≥-4 - одз.
(\sqrt{x+5} - \sqrt{x+4})^{x^2}=(\sqrt{x+5} + \sqrt{x+4})^{5x-6} \\ 
(\sqrt{x+5} - \sqrt{x+4})^{x^2}=( \frac{1}{\sqrt{x+5} - \sqrt{x+4} })^{5x-6} \\ 
(\sqrt{x+5} - \sqrt{x+4})^{x^2}=(\sqrt{x+5} - \sqrt{x+4})^{6-5x}

Нас устроят случаи когда
1.√(x+5)-√(x+4)=0, причем 6-5x>0 - здесь решений нет.
2.√(x+5)-√(x+4)=1 в этом случае корень x=-4.
3. √(x+5)-√(x+4)=-1, причем 6-5x и x² должны быть одинаковой четности при найденном x. Тут тоже нет решений.
4. x^2=6-5x 
x=-6 - не попадает в одз корней.
x=1
Таким образом корни: x=-4, x=1. Наименьший корень равен -4.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота