Нули подмодульных выражений: x = -5; 2 x - 2 - - + [-5][2]> x x + 5 - + +
1) x ∈ (-∞; -5] y = -x + 2 + x + 5 y = 7 2) x ∈ [-5; 2] y = -x + 2 - x - 5 y = -2x - 3 Функция y = -2x - 3 убывающая. Наименьшее значение будет принимать при наибольшем x из промежутка. y(2) = -2·2 - 3 = -4 - 3 = -7 3) x ∈ [2; +∞). y = x - 2 - x - 5 y = -7
Наименьшее из всех найденных значений функции будет равно -7.
x = -5; 2
x - 2 - - +
[-5][2]> x
x + 5 - + +
1) x ∈ (-∞; -5]
y = -x + 2 + x + 5
y = 7
2) x ∈ [-5; 2]
y = -x + 2 - x - 5
y = -2x - 3
Функция y = -2x - 3 убывающая. Наименьшее значение будет принимать при наибольшем x из промежутка.
y(2) = -2·2 - 3 = -4 - 3 = -7
3) x ∈ [2; +∞).
y = x - 2 - x - 5
y = -7
Наименьшее из всех найденных значений функции будет равно -7.
ответ: ymin = -7.