В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
myzroman
myzroman
29.07.2020 15:48 •  Алгебра

Найти наибольшее и наименьшее значение функции y=sin2x+2 можно ли это сделать без производных?

Показать ответ
Ответ:
viktoriadog
viktoriadog
02.08.2020 20:45
1) Для начала подставим границы отрезка, т. е. числа 1 П в функцию:
у (0) = 0+sin0 = 0
y(П) = П + sin2П = П+0 = П
2) Теперь найдем производную этой функции:
y' = 1+ 2cos2x
3) Найдем точки, в которых производная равна 0
1 + 2cos2x = 0
cos2x = -1/2
2x = + -arccos(-1/2) + 2Пn
2x = + -arccos(1/2) + П +2Пn
2x = + -П/3 +П + 2Пn
2x = + -4П/3 +2Пn
х = + -2П/3 +Пn
4) Находим точки, попадающие в отрезок [0,П] (здесь их 2)
при n=0 x = 2П/3
и
при n=1 х = -2П/3+П = П/3
5)подставляем найденные точки в функцию
у (П/3) = П/3 + sin (2П/3) = П/3 + sqrt(3)/2
y(2П/3) = 2П/3 + sin (4П/3) = 2П/3 -sqrt(3)/2
6) из полученных нами значений (0, П, П/3 + sqrt(3)/2 и 2П/3 -sqrt(3)/2) выбираем наименьшее и наибольшее.
Очевидно, что У наименьшее = 0
У наибольшее = П

Примечание sqrt - квадратный корень
Только если так.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота