Х² + 9х = 0
I.Рациональный решения.
Вынести общий множитель за скобку:
х * (х + 9 ) = 0
Произведение = 0 , если один из множителей =0.
х₁= 0
х + 9=0
х₂= -9
II. Решение через дискриминант [ D= b² -4ac ]
Стандартный вид квадратного уравнения:
х² + 9х + 0 =0
а = 1 ; b= 9 ; с = 0
D = 9² - 4*1*0 = 9²
D>0 - два корня уравнения [ х₁,₂ = (-b ⁺₋ √D)/2a ) ]
х₁ = ( - 9 + √9²) /(2*1) = (-9 + 9)/2 = 0/2 = 0
x₂ = ( - 9 - √9²) /(2*1) = (-9 - 9)/2 = -18/2 = - 9
ответ: ( - 9 ; 0 ) .
Объяснение:
Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
Х² + 9х = 0
I.Рациональный решения.
Вынести общий множитель за скобку:
х * (х + 9 ) = 0
Произведение = 0 , если один из множителей =0.
х₁= 0
х + 9=0
х₂= -9
II. Решение через дискриминант [ D= b² -4ac ]
Стандартный вид квадратного уравнения:
х² + 9х + 0 =0
а = 1 ; b= 9 ; с = 0
D = 9² - 4*1*0 = 9²
D>0 - два корня уравнения [ х₁,₂ = (-b ⁺₋ √D)/2a ) ]
х₁ = ( - 9 + √9²) /(2*1) = (-9 + 9)/2 = 0/2 = 0
x₂ = ( - 9 - √9²) /(2*1) = (-9 - 9)/2 = -18/2 = - 9
ответ: ( - 9 ; 0 ) .
Объяснение:
Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.