23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
A) Нашей задачей на самом деле является нахождение определенного интеграла от функции на каком-то промежутке, потому что определенный интеграл представляет собой площадь под графиком функции (т.е. между графиком и прямой ) В общем случае, нужно решить уравнение чтобы найти те точки, где график пересекает прямую . В нашем случае несложно догадаться, что пересекает ее в ,
Итак:
ответ: площадь фигуры равна 32/3 кв. ед
б) Эта задача сводится к вычислению следующего интеграла (как видно из рисунка 2):
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
В общем случае, нужно решить уравнение чтобы найти те точки, где график пересекает прямую . В нашем случае несложно догадаться, что пересекает ее в ,
Итак:
ответ: площадь фигуры равна 32/3 кв. ед
б) Эта задача сводится к вычислению следующего интеграла (как видно из рисунка 2):
ответ: площадь искомой фиругы равна 4/3.