В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
vddrobysheva
vddrobysheva
06.05.2022 02:31 •  Алгебра

Найти частное решение дифференциального уравнения, удовлетворяющего указанным начальным условиям:
y=1 при x=2

Показать ответ
Ответ:
hlebushek225
hlebushek225
10.09.2020 03:40

ответ: 35

Объяснение:

Предположим, что в классе  менее n человек, причем 2.3 ,тогда  минимальный процент неуспевающих учеников будет достигнут при наибольшем возможном числе  учеников, то есть n-1 и при минимальном числе неуспевающих учеников, то есть 1 .

Таким образом, при таком условии процент неуспевающих учеников : 100*\frac{1}{n-1}

Найдем минимальное число n удовлетворяющее неравенству:

2.3

Предположим, что в классе менее 35 человек, тогда минимальный процент учеников неуспевающих в классе

100\frac{1}{34} =\frac{100}{34} = 2+ \frac{32}{34} = 2+ \frac{16}{17}

Сравним:

2+\frac{16}{17} и  2.9

2+\frac{16}{17} и 2+\frac{9}{10}

\frac{16}{17} и \frac{9}{10}

\frac{160}{170}\frac{153}{170}  

100\frac{1}{34} 2.9

То есть мы пришли к противоречию. А значит в классе как минимум 35 человек. C другой стороны, как было показано выше, для случая 35 человек может быть достигнут процент неуспевающих учеников в пределах от 2,3% до 2,9%. Это произойдет когда в классе из 35 человек неуспевает ровно 1 ученик.

0,0(0 оценок)
Ответ:
wigler
wigler
16.01.2020 05:57

Объяснение:

При n=1 верность неравенства очевидна.

При n=2, получаем известное верное неравенство, оно нам понадобится.

\frac{a+b}{2} \geq \sqrt{ab}

Теперь докажем, что из верности неравенство верно для n=m, следует его верность для n=2m.

В самом деле, пусть неравенство верно для n=m. Нам нужно доказать, что тогда верно и неравенство

\frac{a_1+a_2+...+a_m+a_{m+1}+...+a_{2m}}{2m} \geq \sqrt[2m]{a_1a_2...a_{2m}}

Так как неравенство верно для n=m (по индуктивному предположению), можем записать такие два неравенства:

\frac{a_1+a_2+...+a_m}{m} \geq \sqrt[m]{a_1a_2...a_{m}} \\\frac{a_{m+1}+a_{m+2}+...+a_{2m}}{m} \geq \sqrt[m]{a_{m+1}...a_{2m}} \\

Теперь сложим эти неравенства и разделим обе части полученного на 2. Получится вот такое неравенство:

\frac{a_1+a_2+...+a_{2m}}{2m} \geq \frac{\sqrt[m]{a_1a_2...a_{m}}+\sqrt[m]{a_{m+1}...a_{2m}}}{2}

Но использовав неравенство для n=2 получаем:

\frac{\sqrt[m]{a_1a_2...a_{m}}+\sqrt[m]{a_{m+1}...a_{2m}}}{2} \geq \sqrt{\sqrt[m]{a_1a_2...a_{m}}\sqrt[m]{a_{m+1}...a_{2m}}} =\sqrt[2m]{a_1a_2...a_{2m}}

Тогда и подавно

\frac{a_1+a_2+...+a_{2m}}{2m} \geq \sqrt[2m]{a_1a_2...a_{2m}}

А теперь, следуя за Коши (который как раз первым доказал это неравенство), заметим, что из доказанного выше следует, что если неравенство верно для n=2^k (где k - натуральное), то оно верно и для n=2^{k+1}. Действительно, чтобы доказать это, достаточно положить m=2^k, тогда 2m=2^{k+1} и неравенство также верно. А так как неравенство верно для n=2, то по индукции отсюда получаем верность неравенства для всех остальных степеней двойки, то есть для чисел вида n=2^a при любом натуральном a. Это утверждение назовём Леммой 1.

Осталось доказать, что из верности неравенства для n=k, следует его верность для n=k-1. Это будет наша Лемма 2.

Ну что же, раз в задании дана такая превосходная подсказка - воспользуемся ей. Найдём такой x, о котором идёт речь в задании. Он выражается из данной в условии формулы очевидным образом, не буду на этом останавливаться:

x=\frac{a_1+a_2+...+a_{n-1}}{n-1}

Теперь пусть неравенство верно для произвольного n=k.

Применим это неравенство к числам a_1, a_2, ... , a_{k-1}, \frac{a_1+a_2+...a_{k-1}}{k-1}:

\frac{a_1+...+a_{k-1}+\frac{a_1+...+a_{k-1}}{k-1} }{k} \geq \sqrt[k]{a_1...a_{k-1}\frac{a_1+...+a_{k-1}}{k-1}}

Что получится в левой части мы знаем - среднее арифметическое чисел a_1, ... , a_{k-1}. Далее возводим неравенство в степень k и преобразовываем:

\bigg(\frac{a_1+...+a_{k-1}}{k-1} \bigg)^k\geq a_1...a_{k-1}\frac{a_1+...+a_{k-1}}{k-1}\\\bigg(\frac{a_1+...+a_{k-1}}{k-1} \bigg)^{k-1}\geq a_1...a_{k-1}\\\frac{a_1+...+a_{k-1}}{k-1}\geq \sqrt[k-1]{a_1...a_{k-1}}

Получили как раз неравенство для n=k-1.

Собственно, неравенство можно считать доказанным. Лемма 1 и Лемма 2 решают вопрос для любого n. В самом деле, возьмём произвольное натуральное n. Очевидно, найдётся такое натуральное a, что 2^an. Неравенство верно для этой степени двойки (Лемма 1). Но оно верно также и для всех натуральных чисел меньших её, это по индукции следует из Леммы 2. Тогда неравенство верно и для нашего произвольно выбранного n.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота