В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Annna987
Annna987
12.03.2022 17:36 •  Алгебра

Найдиье значение выражения, #3.11.
2 ! ​

Показать ответ
Ответ:
hello120
hello120
24.03.2020 04:57

Искомое количество чисел найдем так: от общего количества четырехзначных чисел с неповторяющимися цифрами отнимем количество четырехзначных чисел с неповторяющимися нечетными цифрами.

Итак, ищем общее количество четырехзначных чисел с неповторяющимися цифрами.

На первом месте может стоять любая из цифр от 1 до 9 (9 вариантов). На втором месте - любая из 9 (8 неиспользованных на предыдущем шаге + цифра "0"), на третьем - любая из 8 оставшихся, на четвертом - любая из 7 оставшихся. Тогда общее количество чисел:

9\cdot9\cdot8\cdot7=4536

Ищем количество четырехзначных чисел с неповторяющимися нечетными цифрами.

На первом месте может стоять любая из нечетных цифр (5 вариантов). На втором месте - любая из 4 оставшихся, на третьем - любая из 3 оставшихся, на четвертом - любая из 2 оставшихся. Тогда общее количество чисел:

5\cdot4\cdot3\cdot2=120

Значит, искомое количество четырехзначных чисел с неповторяющимися цифрам, в записи которых есть хотя бы одна чётная цифра:

4536-120=4416

ответ: 4416 чисел

0,0(0 оценок)
Ответ:
geklaoycd9v
geklaoycd9v
01.07.2022 20:19
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота