Найдите значения функции, соответствующие значениям x=−3, −2, −1, 0, 1, 2, 3.a) y=x ^2 +2x−2; b) y=x ^2 −3; c) y=x ^2−2x; d) f(x)=−x ^2 +x+2; e) y=x ^2 −4x+4; f) f(x)=−2x^2 +3x+10; g) y=x ^2–5x+6; h) y=x ^2+x+1; i) y=–x ^2+x–1.результаты дайте в табличной форме и постройте графики. какую вид имеют данные графики?
По условию необходимо найти числа, кратные 5. Значит, последней цифрой искомых чисел может быть 0 или 5.
1. В первом случае, когда число заканчивается цифрой 0, остальные 4 цифры можно выбирать из множества девяти цифр {1,2,3,...8,9}.
В решении используем размещения, так как порядок элементов важен, ведь поменяв местами цифры, числа изменятся.
Размещением из n элементов по m элементов (m≤n) называется упорядоченная выборка элементов m из данного множества элементов n.
Размещения вычисляются по формуле Amn=n!(n−m)!
По формуле получим число вариантов A49=9!(9−4)!=3024
2. Если число oканчивается цифрой 5, то в качестве первой цифры можно взять любую из восьми цифр 1,2,3,4,6,7,8,9 — нельзя использовать 0, т.к. число должно быть 5-значным.
Цифры со второй по 4 можно выбрать A38=8!(8−3)!=336 различными Следовательно, по правилу произведения имеется 8⋅A38 чисел, оканчивающихся цифрой 5.
По правилу суммы находим, сколько существует чисел, удовлетворяющих условию задачи A49+8⋅A38=3024+8⋅336=5712
ответ: 5712