В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
дзхен
дзхен
16.03.2023 08:51 •  Алгебра

Найдите значения a и b при которых данное тождество верное : 3x^5 - x^4+x^3-4x+1=(x^2 -1)(3x^3 +Ax^2 +Bx) (с решением)

Показать ответ
Ответ:
naoimiiwsvb2
naoimiiwsvb2
27.03.2023 18:43

-3.

Объяснение:

√(6 -2√5) - √(9+4√5) =

Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:

6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =

(√5 -1)^2.

9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =

(√5 + 2)^2.

Именно поэтому решение запишется так:

√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l

Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:

(√5 - 1) - (√5 + 2) =

Упрощаем получившееся выражение:

√5 - 1 - √5 - 2 = -1 -2 = -3.

ответ: -3.

Использованные тождества:

а^2 - 2аb + b^2 = (a-b)^2;

а^2 + 2аb + b^2 = (a+b)^2;

√(a)^2 = lal.

0,0(0 оценок)
Ответ:
Akri2532
Akri2532
04.12.2022 19:26
Решить систему:

\dispaystyle \left \{ {{ \frac{567-9^{-x}}{81-3^{-x}} \geq 7 \atop {log_{0.25x^2} \frac{x+12}{4} \leq 1}} \right.

решаем неравенства 

1)
\dispaystyle \frac{576-3^{-2x}}{81-3^{-x}} \geq 7

\dispaystyle (\frac{1}{3})^x=y

\dispaystyle \frac{567-y^2}{81-y} \geq 7\\ \frac{567-y^2-7*81+7y}{81-y} \geq 0\\ \frac{y(7-7y)}{81-y} \geq 0

\dispaystyle y \neq 0. y \neq 81; y=7

   +       -            +
-----7----------81---

\dispaystyle \frac{1}{3}^{x} \leq 7\\x \geq log_{1/3}7

\dispaystyle \frac{1}{3}^x\ \textgreater \ 81\\x\ \textless \ -4

2)

\dispaystyle log_{0.25x^2} \frac{x+12}{4} \leq 1

1. 0.25x²>1; x∈(-oo;-2)∪(2;+oo)

\dispaystyle \frac{x+12}{4} \leq 0.25x^2\\x+12-x^2 \leq 0\\x^2-x-12 \geq 0
x∈(-oo;-3]∪[4;+oo)

2) 0<0.25x²<1; x∈(-2;2)

\dispaystyle \frac{x+12}{4} \geq 0.25x^2\\x+12-x^2 \geq 0\\x^2-x-12 \leq 0
x∈[-3;4] и с учетом условия x∈(-2;2)

объединяем все промежутки

---- (- 4) -------( - 3) ------( - 2) -------( - log₃7)-------(2 )----- (4 )----
/////                                                         ////////////////////////////////////////
\\\\\\\\\\\\\\\\\\\\\\\\\\\             \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\            \\\\\\\\\\\\\\\\

ответ : (-oo;-4)∪(-log₃7;2)∪(4;+oo)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота