1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
При каких значениях параметра уравнение (x²-(4a-3)x -12a ) / (x²-1) =0 имеет 1 корень .
Решение : (x² - (4a - 3)x - 12a ) / (x² - 1 ) = 0 ⇔
{ x²-(4a-3)x -12a = 0 ;
{x² - 1 ≠ 0 . || ОДЗ ||
x²- 1≠ 0⇔x ≠ ± 1 * * * (x+1)(x-1) ≠0⇔ x+1≠0 и x-1 ≠0 ⇔ x ≠ -1 и x ≠ 1 * * *
x² - (4a - 3)x - 12a = 0
- - -
Если a =0 * * * - 12a = 0 * * *
x²-(4a-3)x-12a =0 ⇔x² +3x=0⇔(x+3)x=0⇒x₁ = -3,x₂= 0 два корня
- - -
D=(4a-3)²- 4*1*(-12a) =16a²-24a +9-4*1*(-24a)=16a²+24a+9 = (4a+3)² ≥0
Если D = 0 ⇔ 4a+3=0⇔ a = - 3/4 x₁=x₂=(4a-3)/2 = - 3 ( кратный корень)
По уставу ЕГЭ _ одно решение
звучит так: Квадратное уравнение имеет ОДИН корень, если D=0
* * * a = - 3/4 ⇒x²- (4a-3)x -12a =0 ⇔ x²+6x+9 =0 ⇔(x+3)² = 0 ⇒x = -3 * * *
x₁,₂ = (4a-3 ±(4a+3) ) /2 ;
x₁ =(4a-3- 4a- 3) /2 = -3 ; ясно x₁ = -3 решение ( ∈ ОДЗ )
* * * уже обеспечен один корень * * *
x₂=(4a-3 +4a+3)/2 = 4a
Для того чтобы уравнение имел только один корень x₂=4a не должно быть корнем , т.е. 4a = - 1 или 4a = 1 . a = - 1/4 или a = 1 /4
* * * [ 4a = - 1 ; 4a = 1 . ( совокупность уравнений ) * * *
ответ: - 3/4 -1/4 ; 1/4 . * * * -0,75 ; - 0,25 ;0,25 * * *
* * * P.S. Квадратное уравнение ax²+bx+c =0 ⇔a(x+b/2a)²- D/4a =0 ;a≠0 .
если D = 0 , то ( x+b/2a)² = 0 ⇒ x₁ = x₂= - b/2a_двукратный корень * * *