В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
manonako1
manonako1
07.06.2022 22:10 •  Алгебра

Найдите все значения x, при которых выполняется равенство f' (x) = 0, если f (x) = sin2x - x√3 и x ∈ [0,4π]

Показать ответ
Ответ:
korolevaleksan
korolevaleksan
23.05.2020 16:40

F(x)=sin(2x)- x√3

F ‘ (x)=2cos(2x)- √3=0

2cos(2x)=√3

cos(2x)=√3/2

2x=±arccos(√3/2)+2*pi*n

2x=±pi/6+2*pi*n

x=±pi/12+pi*n

 

На промежутке [0,4π]

  x=pi/12

  x=-pi/12+pi

  x=pi/12+pi

  x=-pi/12+2pi

  x=pi/12+2pi

  x=-pi/12+3pi

  x=pi/12+3pi

  x=-pi/12+4pi

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота