Объяснение:
у=2х²-6х-2
наименьшее значение функции ищем с производных
первая производная даст нам критическую точку (точку минимума или максимума)
y'= 4x -6 = 2(2х - 3)
для поиска приравняем первую производную к нулю
2(2х-3)=0; х₁ - 3/2 - это критическая точка
значение функции в точке
у(3/2) = - 13/2
теперь надо понять минимум это или максимум
если вторая производная больше нуля, то это минимум
и наоборот
у" = (4х-6)' = 4
y(3/2) = 4 > 0 - это точка минимума и значение функции в этой точке будет
у = - 13/2
cos5x + cosx + 2cos2x = 0
2cos(5x+x/2)cos(5x-x/2) + 2cos2x = 0
2cos(6x/2)cos(4x/2) + 2cos2x = 0
2cos3x × cos2x + 2cos2x = 0
2cos2x × (cos3x + 1) = 0 | : 2
cos2x × (cos3x + 1) = 0
cos2x = 0 или cos3x + 1 = 0
2x = π/2 + πn cos3x = -1
x₁ = π/2 × 1/2 + πn × 1/2 3x = π + 2πn
x₁ = π/4 + πn/2, n∈Z x₂ = π × 1/3 + 2πn × 1/3
x₂ = π/3 + 2πn/3, n∈Z
ответ: x₁ = π/4 + πn/2, n∈Z
Объяснение:
у=2х²-6х-2
наименьшее значение функции ищем с производных
первая производная даст нам критическую точку (точку минимума или максимума)
y'= 4x -6 = 2(2х - 3)
для поиска приравняем первую производную к нулю
2(2х-3)=0; х₁ - 3/2 - это критическая точка
значение функции в точке
у(3/2) = - 13/2
теперь надо понять минимум это или максимум
если вторая производная больше нуля, то это минимум
и наоборот
у" = (4х-6)' = 4
y(3/2) = 4 > 0 - это точка минимума и значение функции в этой точке будет
у = - 13/2
cos5x + cosx + 2cos2x = 0
2cos(5x+x/2)cos(5x-x/2) + 2cos2x = 0
2cos(6x/2)cos(4x/2) + 2cos2x = 0
2cos3x × cos2x + 2cos2x = 0
2cos2x × (cos3x + 1) = 0 | : 2
cos2x × (cos3x + 1) = 0
cos2x = 0 или cos3x + 1 = 0
2x = π/2 + πn cos3x = -1
x₁ = π/2 × 1/2 + πn × 1/2 3x = π + 2πn
x₁ = π/4 + πn/2, n∈Z x₂ = π × 1/3 + 2πn × 1/3
x₂ = π/3 + 2πn/3, n∈Z
ответ: x₁ = π/4 + πn/2, n∈Z
x₂ = π/3 + 2πn/3, n∈Z