Обозначим центр основания конуса O, вершину - C. Опустим из C высоту - она попадет в точку O. В плоскости основания проведем любой радиус OA. Соединим точки C и A. Тогда CA - образующая конуса, OA - радиус основания конуса и CO - высота конуса. Треугольник COA - прямоугольный, в котором известны угол CAO, равный 60°, и гипотенуза CA, равная 6/√π. При этом катет OA является радиусом основания конуса R.
Полная поверхность конуса складывается из площади основания и площади боковой поверхности конуса. Площадь основания - это площадь круга с радиусом R, т.е. πR². Площадь боковой поверхности прямого конуса определяется по формуле πRL, где R - радиус основания, а L - длина образующей.
Значит, площадь полной поверхности конуса S равна πR²+πRL = πR(R+L).
L=6/√π R определим из прямоугольного треугольника COA: OA/CA=cos∠CAO ⇒ OA=CA*cos∠CAO. ∠CAO=60° ⇒ cos∠CAO=cos60°=1/2 ⇒ OA=R=CA*cos∠SAO=L/2=3/√π
Тогда CA - образующая конуса, OA - радиус основания конуса и CO - высота конуса.
Треугольник COA - прямоугольный, в котором известны угол CAO, равный 60°, и гипотенуза CA, равная 6/√π. При этом катет OA является радиусом основания конуса R.
Полная поверхность конуса складывается из площади основания и площади боковой поверхности конуса.
Площадь основания - это площадь круга с радиусом R, т.е. πR².
Площадь боковой поверхности прямого конуса определяется по формуле πRL, где R - радиус основания, а L - длина образующей.
Значит, площадь полной поверхности конуса S равна πR²+πRL = πR(R+L).
L=6/√π
R определим из прямоугольного треугольника COA: OA/CA=cos∠CAO ⇒ OA=CA*cos∠CAO.
∠CAO=60° ⇒ cos∠CAO=cos60°=1/2 ⇒ OA=R=CA*cos∠SAO=L/2=3/√π
S = πR(R+L) = π(6/√π)(3/√π+6/√π) = 6√π(9/√π) = 54
Заметим, что данная функция не проходит через начало координат, а значит точка О(0;0) не является точкой касания.
Пусть точка касания А(а;в)
составим уравнение касательной в точке А
где y(x0)=в. x0=a
тогда уравнение касательной будет выглядеть так:
и эта прямая проходит через точку О(0;0)
подставим эти координаты
тогда уравнение касательной примет вид
Так как касательная у нас проведена к нашей функции то у них есть общая точка пересечения
т.к. в=1, то а=е/3 (ln3x=1: 3x=e; x=e/3)
тогда
и тогда точка касания А(е/3;1)
уравнение касательной