В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
автормемовв
автормемовв
30.09.2020 06:43 •  Алгебра

Найдите восьмой член бинома (x + a) 12

Показать ответ
Ответ:
LidaTetyorkina
LidaTetyorkina
31.01.2020 18:35
Обозначим центр основания конуса O, вершину - C. Опустим из C высоту - она попадет в точку O. В плоскости основания проведем любой радиус OA. Соединим точки C и A.
Тогда CA - образующая конуса, OA - радиус основания конуса и CO - высота конуса.
Треугольник COA - прямоугольный, в котором известны угол CAO, равный 60°, и гипотенуза CA, равная 6/√π. При этом катет OA является радиусом основания конуса R.

Полная поверхность конуса складывается из площади основания и площади боковой поверхности конуса.
Площадь основания - это площадь круга с радиусом R, т.е. πR².
Площадь боковой поверхности прямого конуса определяется по формуле πRL, где R - радиус основания, а L - длина образующей.

Значит, площадь полной поверхности конуса S равна πR²+πRL = πR(R+L).

L=6/√π
R определим из прямоугольного треугольника COA: OA/CA=cos∠CAO ⇒ OA=CA*cos∠CAO.
∠CAO=60° ⇒ cos∠CAO=cos60°=1/2 ⇒ OA=R=CA*cos∠SAO=L/2=3/√π

S = πR(R+L) = π(6/√π)(3/√π+6/√π) = 6√π(9/√π) = 54
0,0(0 оценок)
Ответ:
Ashmalikova
Ashmalikova
12.08.2021 13:57
Составьте уравнение той касательной к графику функции y=ln3x, которая проходит через начало координат

Заметим, что данная функция не проходит через начало координат, а значит точка О(0;0) не является точкой касания. 

Пусть точка касания А(а;в)

составим уравнение касательной в точке А

\dispaystyle y_{kac}=y(x_0)+y`(x_0)*(x-x_0)

где y(x0)=в. x0=a

\dispaystyle y`(x)=(ln3x)`= \frac{1}{3x}*3= \frac{1}{x}

тогда уравнение касательной будет выглядеть так: 
\dispaystyle y_{kac}=b+ \frac{1}{a}(x-a)

и эта прямая проходит через точку О(0;0)
подставим эти координаты

\dispaystyle 0=b+ \frac{1}{a}(0-a)=b-1\\b=1

тогда уравнение касательной примет вид

\dispaystyle y_{kac}=1+ \frac{1}{a}(x-a)=1+ \frac{x}{a}-1= \frac{x}{a}

Так как касательная у нас проведена к нашей функции то у них есть общая точка пересечения

\dispaystyle \frac{x}{a}=ln3x

т.к. в=1, то а=е/3 (ln3x=1: 3x=e; x=e/3)

тогда

\dispaystyle \frac{e}{3a}=ln(3* \frac{e}{3})\\ \frac{e}{3a}=1\\a= \frac{e}{3}

 и тогда точка касания А(е/3;1)
уравнение касательной 
\dispaystyle y=\frac{x}{e/3}= \frac{3x}{e}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота