Для каждого выражения под модулем в ур-нии допускаем случаи, когда соотв. выражение ">= 0" или "< 0", решаем получившиеся ур-ния.
1. x−1≥0x−1≥0 x+2≥0x+2≥0 2x−6≥02x−6≥0 или 3≤x∧x<∞3≤x∧x<∞ получаем ур-ние x−1+x+2+2x−6−18=0x−1+x+2+2x−6−18=0 упрощаем, получаем 4x−23=04x−23=0 решение на этом интервале: x1=234x1=234
2. x−1≥0x−1≥0 x+2≥0x+2≥0 2x−6<02x−6<0 или 1≤x∧x<31≤x∧x<3 получаем ур-ние x−1+x+2+−2x+6−18=0x−1+x+2+−2x+6−18=0 решение на этом интервале: Не найдены корни при этом условии
3. x−1≥0x−1≥0 x+2<0x+2<0 2x−6≥02x−6≥0 Неравенства не выполняются, пропускаем
4. x−1≥0x−1≥0 x+2<0x+2<0 2x−6<02x−6<0 Неравенства не выполняются, пропускаем
5. x−1<0x−1<0 x+2≥0x+2≥0 2x−6≥02x−6≥0 Неравенства не выполняются, пропускаем
6. x−1<0x−1<0 x+2≥0x+2≥0 2x−6<02x−6<0 или −2≤x∧x<1−2≤x∧x<1 получаем ур-ние −x+1+x+2+−2x+6−18=0−x+1+x+2+−2x+6−18=0 упрощаем, получаем −2x−9=0−2x−9=0 решение на этом интервале: x2=−92x2=−92 но x2 не удовлетворяет неравенству
7. x−1<0x−1<0 x+2<0x+2<0 2x−6≥02x−6≥0 Неравенства не выполняются, пропускаем
8. x−1<0x−1<0 x+2<0x+2<0 2x−6<02x−6<0 или −∞<x∧x<−2−∞<x∧x<−2 получаем ур-ние −x−2+−x+1+−2x+6−18=0−x−2+−x+1+−2x+6−18=0 упрощаем, получаем −4x−13=0−4x−13=0 решение на этом интервале: x3=−134x3=−134
допускаем случаи, когда соотв. выражение ">= 0" или "< 0",
решаем получившиеся ур-ния.
1.
x−1≥0x−1≥0
x+2≥0x+2≥0
2x−6≥02x−6≥0
или
3≤x∧x<∞3≤x∧x<∞
получаем ур-ние
x−1+x+2+2x−6−18=0x−1+x+2+2x−6−18=0
упрощаем, получаем
4x−23=04x−23=0
решение на этом интервале:
x1=234x1=234
2.
x−1≥0x−1≥0
x+2≥0x+2≥0
2x−6<02x−6<0
или
1≤x∧x<31≤x∧x<3
получаем ур-ние
x−1+x+2+−2x+6−18=0x−1+x+2+−2x+6−18=0
решение на этом интервале:
Не найдены корни при этом условии
3.
x−1≥0x−1≥0
x+2<0x+2<0
2x−6≥02x−6≥0
Неравенства не выполняются, пропускаем
4.
x−1≥0x−1≥0
x+2<0x+2<0
2x−6<02x−6<0
Неравенства не выполняются, пропускаем
5.
x−1<0x−1<0
x+2≥0x+2≥0
2x−6≥02x−6≥0
Неравенства не выполняются, пропускаем
6.
x−1<0x−1<0
x+2≥0x+2≥0
2x−6<02x−6<0
или
−2≤x∧x<1−2≤x∧x<1
получаем ур-ние
−x+1+x+2+−2x+6−18=0−x+1+x+2+−2x+6−18=0
упрощаем, получаем
−2x−9=0−2x−9=0
решение на этом интервале:
x2=−92x2=−92
но x2 не удовлетворяет неравенству
7.
x−1<0x−1<0
x+2<0x+2<0
2x−6≥02x−6≥0
Неравенства не выполняются, пропускаем
8.
x−1<0x−1<0
x+2<0x+2<0
2x−6<02x−6<0
или
−∞<x∧x<−2−∞<x∧x<−2
получаем ур-ние
−x−2+−x+1+−2x+6−18=0−x−2+−x+1+−2x+6−18=0
упрощаем, получаем
−4x−13=0−4x−13=0
решение на этом интервале:
x3=−134x3=−134
Тогда, окончательный ответ:
x1=234x1=234
x2=−134
(x+y)² + xy = 4(x+y) - 3 ⇒ u² +v = 4u -4
2(x+y) = 5 - xy ⇒ 2u = 5 - v ⇔ v = 5 -2u ⇒
u² + 5 -2u -4u +3 = 0
u² - 6u +8 = 0 ⇔ (u - 2)(u-4) = 0
1) u = 2 ⇒ v = 1
x+y = 2 I y =2-x
xy =1 I x(2-x) =1 ⇒ x² -2x +1 =0 ⇔ (x-1)² =0 ⇒
x=1 ⇒ y =1
2) u =4 ⇒ v = -3 ⇒
x+y=4 I y = 4-x
xy = -3 I x(4-x) = -3 ⇒ x² -4x -3 =0
x1=2+√7 ⇒ y1=2-√7
x2= 2-√7 ⇒ y2=2+√7
ответ : (1;1) ; (2+√7 ; 2-√7) ; (2-√7 ; 2+√7)